等離子體又叫做電漿,是由被剝奪部分電子后的原子及原子被電離后產生的負電子組成的離子化氣體狀物質。等離子體常被視為是除去固、液、氣外,物質存在的第四態。
冰升溫至0℃會變成水,如繼續使溫度升至100℃,那么水就會沸騰成為水蒸氣。隨著溫度的上升,物質的存在狀態一般會呈現出固態→液態→氣態三種物態的轉化過程,我們把這三種基本形態稱為物質的三態。那么對于氣態物質,溫度升至幾千度時,將會有什么新變化呢? 由于物質分子熱運動加劇,相互間的碰撞就會使氣體分子產生電離,這樣物質就變成由自由運動并相互作用的正離子和電子組成的混合物(蠟燭的火焰就處于這種狀態)。我們把物質的這種存在狀態稱為物質的第四態,即等離子體(plasma)。因為電離過程中正離子和電子總是成對出現,所以等離子體中正離子和電子的總數大致相等,總體來看為準電中性。反過來,我們可以把等離子體定義為:正離子和電子的密度大致相等的電離氣體。
從剛才提到的微弱的蠟燭火焰,我們可以看到等離子體的存在,而夜空中的滿天星斗又都是高溫的*電離等離子體。據印度天體物理學家沙哈(M.Saha,1893-1956)的計算,宇宙中的99.9%的物質處于等離子體狀態。此外,太陽、電離層、極光、雷電等都是自然界中的等離子體。在人工生成等離子體的方法中,氣體放電法比加熱的辦法更加簡便,諸如熒光燈、霓虹燈、電弧焊、電暈放電等等。在自然和人工生成的各種主要類型的等離子體的密度和溫度的數值,其密度為106(單位:個/m3)的稀薄星際等離子體到密度為1025的電弧放電等離子體,跨越近20個數量級。其溫度分布范圍則從100K的低溫到超高溫核聚變等離子體的108-109K(1-10億度)。 溫度軸的單位eV(electron volt)是等離子體領域中常用的溫度單位,1eV=11600K。
通常,等離子體中存在電子、正離子和中性粒子(包括不帶電荷的粒子如原子或分子以及原子團)等三種粒子。設它們的密度分別為ne,ni,nn,由于準電中性,所以電離前氣體分子密度為ne≈nn。于是,我們定義電離度β=ne/(ne+nn),以此來衡量等離子體的電離程度。日冕、核聚變中的高溫等離子體的電離度都是100%,像這樣β=1的等離子體稱為*電離等離子體。電離度大于1%(β≥10-2)的稱為強電離等離子體,像火焰中的等離子體大部分是中性粒子(β<10-3 ),稱之為弱電離等離子體。
若放電是在接近于大氣壓的高氣壓條件下進行,那么電子、離子、中性粒子會通過激烈碰撞而充分交換動能,從而使等離子體達到熱平衡狀態。若電子、離子、中性粒子的溫度分別為了Te,Ti,Tn,我們把這三種粒子的溫度近似相等(Te≈Ti≈Tn)的熱平衡等離子體稱為熱等離子體(thermal plasma),在實際的熱等離子體發生裝置中,陰極和陽極間的電弧放電作用使得流入的工作氣體發生電離,輸出的等離子體呈噴射狀,可用作等離子體射流(plasma jet)、等離子體噴焰(plasma torch)等。 另一方面,數百帕以下的低氣壓等離子體常常處于非熱平衡狀態。此時,電子在與離子或中性粒子的碰撞過程中幾乎不損失能量,所以有Te>>Ti 、Te>>Tn。我們把這樣的等離子體稱為低溫等離子體(cold plasma)。當然,即使是在高氣壓下,低溫等離子體還可以通過不產生熱效應的短脈沖放電模式即電暈放電(corona discharge)或電弧滑動噴射式放電來生成。大氣壓下的輝光放電技術目前也已成為世界各國的研究熱點。可產生大氣壓非平衡態等離子體的機理尚不清楚,在高氣壓下等離子體的輸運特性的研究也剛剛起步,現已形成新的研究熱點。
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。