1 電網諧波的產生 1.1 電源本身諧波 由于發電機制造工藝的問題,致使電樞表面的磁感應強度分布稍稍偏離正弦波,因此,產生的感應電動勢也會稍稍偏離正弦電動勢,即所產生的電流稍偏離正弦電流。當然,幾個這樣的電源并網時,總電源的電流也將偏離正弦波。 1.2 由非線性負載所致 1.2.1 非線性負載 諧波產生的另一個原因是由于非線性負載。當電流流經線性負載時,負載上電流與施加電壓呈線性關系;而電流流經非線性負載時,則負載上電流為非正弦電波,即產生了諧波。 1.2.2 主要非線性負載裝置 (1)開關電源的高次諧波:開關電源由五部分組成:一次整流、開關振蕩回路、二次整流、負載和控制,這幾個部分產生的噪聲不*一樣。這幾種干擾可以通過電源線等產生輻射干擾,也可以通過電源產生傳導干擾。 (2)變壓器空載合閘涌流產生諧波 鐵心中磁通變化時,會產生8~15倍額定電流的涌流,由于線圈電阻的存在,變壓器空載合閘涌流一般經過幾個周波即可達到穩定。所產生的勵磁涌流所含的諧波成份以3次諧波為主。 (3)單相電容器組開斷時的瞬態過電壓干擾:電力電子調速系統普遍應用于工業中改進電機效率及靈活性設備,調速裝置內電力電子器件對過電壓特別敏感,因此線路中瞬態過電壓會造成調速系統的過電壓保護誤跳閘。由于與中壓母線相連的電容器要經常操作,這意味著調速系統誤跳閘事故會經常發生; (4)電壓互感器鐵磁諧振過電壓:在我國10kV、35kV等級的中性點不接地配電網中,為了監視對地絕緣,一般采用三相五柱式電壓互感器。在正常情況下,三相對地電壓是平衡的,但是由于發生單相接地故障等原因,會導致三相對地電壓平衡的破壞,還有可能使電壓互感器線圈電感L和系統對地電容C在參數上配合,而產生諧振過電壓。 (5)整流器和逆變器產生的諧波電壓、電流:整流器的作用將交流電轉成直流電,而逆變器是將直流電轉變成交流電。其電路中的二極管視為理想二極管,即正向阻抗接近零,反向阻抗無窮大。因此,只允許電流單方向流動,從整流器的輸出端看,每相電流波形為矩形波,不是正弦波,利用傅氏級數展開式展開周期的矩形波形,可以看到除了工頻正弦波(50Hz基波)外,還疊加了一系列高次波形——諧波。應該說電動機采用變頻器進行調速,可以高水平完成調速外,也可以節省大量電能(近30%),但如前面分析,變頻調速過程中要產生高次諧波,即形成高次諧波污染,造成廠區的電視、音響系統不能正常工作,還要干擾二次儀表——壓力、流量、可編程控制器及智能控制器正常工作,諧波還要使變壓器、電動機、電容器及電抗器產生過熱。 (6)電弧爐運行引起電壓波動:隨著冶煉工業的發展,當然會更多地使用電弧爐,這是一個重要負荷。運行時,電極和金屬碎粒之間會發生頻繁斷路,而在熔化期間,電源兩相短路,一旦熔化金屬從電極上落下,電弧熄滅,電源又開路,因此,可以說冶煉過程是頻繁的短路-開路-短路的過程,會引起用戶端電壓波動及白熾燈閃爍,一般電壓波動頻率是0.1Hz~幾十Hz,這種諧波是以3次諧波為主。 2 諧波的危害 2.1 污染公用電網 如果公用電網的諧波特別嚴重,則不但使接入該電網的設備(電視機、計算機等)無法正常工作,甚至會造成故障,而且還會造成向公用電網的中性線注入更多電流,造成超載、發熱,影響電力正常輸送。 2.2 影響變壓器工作 諧波電流,特別是3次(及其倍數)諧波侵入三角形連接的變壓器,會在其繞組中形成環流,使繞組發熱。對Y形連接中性線接地系統中,侵入變壓器的中性線的3次諧波電流會使中性線發熱。 2.3 影響繼電保護的可靠性 如果繼電保護裝置是按基波負序量整定其整定值大小,此時,若諧波干擾疊加到極低的整定值上,則可能會引起負序保護裝置的誤動作,影響電力系統安全。 2.4 加速金屬化膜電容器老化 在電網中金屬化膜電容器被大量用于無功補償或濾波器,而在諧波的長期作用下,金屬化膜電容器會加速老化。 2.5 增加輸電線路功耗 如果電網中含有高次諧波電流,那么,高次諧波電流會使輸電線路功耗增加。 如果輸電線是電纜線路,與架空線路相比,電纜線路對地電容要大10~20倍,而感抗僅為其1/3~1/2,所以很容易形成諧波諧振,造成絕緣擊穿。 2.6 增加旋轉電機的損耗 上一般認為電動機在正常持續運行條件下,電網中負序電壓不超過額定電壓的2%,如果電網中諧波電壓折算成等值基波負序電壓大于這個數值,則附加功耗明顯增加。 2.7 影響或干擾測量控制儀器、通訊系統工作 例如,直流輸電中,直流換流站換相時會產生3~10kHz高頻噪聲,會干擾電力載波通信的正常工作。 3 諧波抑制技術 3.1 整機電源需留有較大貯備量 為了使測量、控制裝置能滿足負載較大變化范圍,因此在設計整機電源時,可給予較大貯備量,一般選取0.5~1倍余量; 3.2 對干擾大的設備與測控裝置采用不同相線供電 因為測量、控制裝置的許多干擾是由電源線竄入的,因此在規劃供電線路時,對干擾大的設備與測控裝置采用不同相線供電,; 3.3 將測量、控制裝置的供電與動力裝置的供電分開 因為動力裝置的負荷變動大,測量、控制、微機及電視機的負荷小,動力裝置產生的干擾大,供電電源分開后,測量、控制、微機及電視機的電源與動力裝置的電源相互隔離,可以大大減少通過電源線的干擾。 3.4 其余抑制高次諧波的技術 3.4.1 開關電源干擾的抑制技術 一般采用的辦法是:電源濾波、屏蔽及減少開關電源本身干擾能量。 采用電源濾波器,電源濾波器可以阻止電網中的干擾進入開關電源,也可以阻止開關電源的干擾進入電網。 屏蔽技術可以有效地防止向外輻射干擾。 減少開關電源本身干擾,利用改善線圈繞制工藝,確保繞組之間緊密耦合,以減少變壓器漏感。還可以在高頻整流二極管上串入可飽和磁芯線圈,利用流過反向電流時,因磁芯不飽和而產生的較大電勢阻止反向電流上升。 3.4.2 變壓器空載合閘涌流抑止方法 根據方程Φ1=-Φmcos(ωt+α)=Φmsinωt,如果合閘時,α=90(即U1=U1m便合閘),則: Φ1=-Φmcos(ωt+α)=Φmsinωt沒有暫態分量,合閘后磁通立即進入穩定狀態,理論上可以避免沖擊涌流過程。 3.4.3 抑制單相電容器組開斷瞬態過電壓方法 如果采用選相斷路器投切電容器,則可以消除或大大降低投切電容器產生的瞬態過電壓,從而使接在母線上的電力電子調速系統可以穩定地工作,接在母線上的其余設備也可不受過電壓干擾的影響。 3.4.4 抑制電壓互感器鐵磁諧振方法 其方法是要使它脫離諧振區,采用中性點不接地的電壓互感器或采用電容分壓器可以從根本上避免鐵磁諧振。 3.4.5 抑止整流和逆變產生的諧波 (1)在變頻器前加裝電源濾波器。一種成本比較低的方法是在電源側加裝三只680μf250VAC的電容,(分別接在L-N上)這種方法可使電磁干擾電流降至原來的1/10,效果較明顯; (2)變頻器的電源電纜采用屏蔽電纜,屏蔽電纜穿鐵管并接地,輸出電纜也穿鐵管并接地,屏蔽層應在接變頻器處和電機處兩端都接地。 3.4.6 抑止電弧爐運行時的干擾 (1)在合適地段加入電容補償裝置,補償無功波動; (2)可以重新安排供電系統。 4 結束語 隨著非線性電力設備的廣泛應用,電力系統中諧波問題越來越嚴重,一方面造成了電力設備的損壞,加速絕緣老化,另一方面也影響了計算機、電視系統等電子設備正常工作,直接擾亂了人們的正常生活。 諧波問題涉及供電部門、電力用戶和設備制造商,諧波問題已引起人們的高度重視。應合理規劃電網,電力電子設備(特別一次設備)應符合電磁發射水平,電子設備、電子儀器應滿足電磁兼容性要求。
|
1 電網諧波的產生 1.1 電源本身諧波 由于發電機制造工藝的問題,致使電樞表面的磁感應強度分布稍稍偏離正弦波,因此,產生的感應電動勢也會稍稍偏離正弦電動勢,即所產生的電流稍偏離正弦電流。當然,幾個這樣的電源并網時,總電源的電流也將偏離正弦波。 1.2 由非線性負載所致 1.2.1 非線性負載 諧波產生的另一個原因是由于非線性負載。當電流流經線性負載時,負載上電流與施加電壓呈線性關系;而電流流經非線性負載時,則負載上電流為非正弦電波,即產生了諧波。 1.2.2 主要非線性負載裝置 (1)開關電源的高次諧波:開關電源由五部分組成:一次整流、開關振蕩回路、二次整流、負載和控制,這幾個部分產生的噪聲不*一樣。這幾種干擾可以通過電源線等產生輻射干擾,也可以通過電源產生傳導干擾。 (2)變壓器空載合閘涌流產生諧波 鐵心中磁通變化時,會產生8~15倍額定電流的涌流,由于線圈電阻的存在,變壓器空載合閘涌流一般經過幾個周波即可達到穩定。所產生的勵磁涌流所含的諧波成份以3次諧波為主。 (3)單相電容器組開斷時的瞬態過電壓干擾:電力電子調速系統普遍應用于工業中改進電機效率及靈活性設備,調速裝置內電力電子器件對過電壓特別敏感,因此線路中瞬態過電壓會造成調速系統的過電壓保護誤跳閘。由于與中壓母線相連的電容器要經常操作,這意味著調速系統誤跳閘事故會經常發生; (4)電壓互感器鐵磁諧振過電壓:在我國10kV、35kV等級的中性點不接地配電網中,為了監視對地絕緣,一般采用三相五柱式電壓互感器。在正常情況下,三相對地電壓是平衡的,但是由于發生單相接地故障等原因,會導致三相對地電壓平衡的破壞,還有可能使電壓互感器線圈電感L和系統對地電容C在參數上配合,而產生諧振過電壓。 (5)整流器和逆變器產生的諧波電壓、電流:整流器的作用將交流電轉成直流電,而逆變器是將直流電轉變成交流電。其電路中的二極管視為理想二極管,即正向阻抗接近零,反向阻抗無窮大。因此,只允許電流單方向流動,從整流器的輸出端看,每相電流波形為矩形波,不是正弦波,利用傅氏級數展開式展開周期的矩形波形,可以看到除了工頻正弦波(50Hz基波)外,還疊加了一系列高次波形——諧波。應該說電動機采用變頻器進行調速,可以高水平完成調速外,也可以節省大量電能(近30%),但如前面分析,變頻調速過程中要產生高次諧波,即形成高次諧波污染,造成廠區的電視、音響系統不能正常工作,還要干擾二次儀表——壓力、流量、可編程控制器及智能控制器正常工作,諧波還要使變壓器、電動機、電容器及電抗器產生過熱。 (6)電弧爐運行引起電壓波動:隨著冶煉工業的發展,當然會更多地使用電弧爐,這是一個重要負荷。運行時,電極和金屬碎粒之間會發生頻繁斷路,而在熔化期間,電源兩相短路,一旦熔化金屬從電極上落下,電弧熄滅,電源又開路,因此,可以說冶煉過程是頻繁的短路-開路-短路的過程,會引起用戶端電壓波動及白熾燈閃爍,一般電壓波動頻率是0.1Hz~幾十Hz,這種諧波是以3次諧波為主。 2 諧波的危害 2.1 污染公用電網 如果公用電網的諧波特別嚴重,則不但使接入該電網的設備(電視機、計算機等)無法正常工作,甚至會造成故障,而且還會造成向公用電網的中性線注入更多電流,造成超載、發熱,影響電力正常輸送。 2.2 影響變壓器工作 諧波電流,特別是3次(及其倍數)諧波侵入三角形連接的變壓器,會在其繞組中形成環流,使繞組發熱。對Y形連接中性線接地系統中,侵入變壓器的中性線的3次諧波電流會使中性線發熱。 2.3 影響繼電保護的可靠性 如果繼電保護裝置是按基波負序量整定其整定值大小,此時,若諧波干擾疊加到極低的整定值上,則可能會引起負序保護裝置的誤動作,影響電力系統安全。 2.4 加速金屬化膜電容器老化 在電網中金屬化膜電容器被大量用于無功補償或濾波器,而在諧波的長期作用下,金屬化膜電容器會加速老化。 2.5 增加輸電線路功耗 如果電網中含有高次諧波電流,那么,高次諧波電流會使輸電線路功耗增加。 如果輸電線是電纜線路,與架空線路相比,電纜線路對地電容要大10~20倍,而感抗僅為其1/3~1/2,所以很容易形成諧波諧振,造成絕緣擊穿。 2.6 增加旋轉電機的損耗 上一般認為電動機在正常持續運行條件下,電網中負序電壓不超過額定電壓的2%,如果電網中諧波電壓折算成等值基波負序電壓大于這個數值,則附加功耗明顯增加。 2.7 影響或干擾測量控制儀器、通訊系統工作 例如,直流輸電中,直流換流站換相時會產生3~10kHz高頻噪聲,會干擾電力載波通信的正常工作。 3 諧波抑制技術 3.1 整機電源需留有較大貯備量 為了使測量、控制裝置能滿足負載較大變化范圍,因此在設計整機電源時,可給予較大貯備量,一般選取0.5~1倍余量; 3.2 對干擾大的設備與測控裝置采用不同相線供電 因為測量、控制裝置的許多干擾是由電源線竄入的,因此在規劃供電線路時,對干擾大的設備與測控裝置采用不同相線供電,; 3.3 將測量、控制裝置的供電與動力裝置的供電分開 因為動力裝置的負荷變動大,測量、控制、微機及電視機的負荷小,動力裝置產生的干擾大,供電電源分開后,測量、控制、微機及電視機的電源與動力裝置的電源相互隔離,可以大大減少通過電源線的干擾。 3.4 其余抑制高次諧波的技術 3.4.1 開關電源干擾的抑制技術 一般采用的辦法是:電源濾波、屏蔽及減少開關電源本身干擾能量。 采用電源濾波器,電源濾波器可以阻止電網中的干擾進入開關電源,也可以阻止開關電源的干擾進入電網。 屏蔽技術可以有效地防止向外輻射干擾。 減少開關電源本身干擾,利用改善線圈繞制工藝,確保繞組之間緊密耦合,以減少變壓器漏感。還可以在高頻整流二極管上串入可飽和磁芯線圈,利用流過反向電流時,因磁芯不飽和而產生的較大電勢阻止反向電流上升。 3.4.2 變壓器空載合閘涌流抑止方法 根據方程Φ1=-Φmcos(ωt+α)=Φmsinωt,如果合閘時,α=90(即U1=U1m便合閘),則: Φ1=-Φmcos(ωt+α)=Φmsinωt沒有暫態分量,合閘后磁通立即進入穩定狀態,理論上可以避免沖擊涌流過程。 3.4.3 抑制單相電容器組開斷瞬態過電壓方法 如果采用選相斷路器投切電容器,則可以消除或大大降低投切電容器產生的瞬態過電壓,從而使接在母線上的電力電子調速系統可以穩定地工作,接在母線上的其余設備也可不受過電壓干擾的影響。 3.4.4 抑制電壓互感器鐵磁諧振方法 其方法是要使它脫離諧振區,采用中性點不接地的電壓互感器或采用電容分壓器可以從根本上避免鐵磁諧振。 3.4.5 抑止整流和逆變產生的諧波 (1)在變頻器前加裝電源濾波器。一種成本比較低的方法是在電源側加裝三只680μf250VAC的電容,(分別接在L-N上)這種方法可使電磁干擾電流降至原來的1/10,效果較明顯; (2)變頻器的電源電纜采用屏蔽電纜,屏蔽電纜穿鐵管并接地,輸出電纜也穿鐵管并接地,屏蔽層應在接變頻器處和電機處兩端都接地。 3.4.6 抑止電弧爐運行時的干擾 (1)在合適地段加入電容補償裝置,補償無功波動; (2)可以重新安排供電系統。 4 結束語 隨著非線性電力設備的廣泛應用,電力系統中諧波問題越來越嚴重,一方面造成了電力設備的損壞,加速絕緣老化,另一方面也影響了計算機、電視系統等電子設備正常工作,直接擾亂了人們的正常生活。 諧波問題涉及供電部門、電力用戶和設備制造商,諧波問題已引起人們的高度重視。應合理規劃電網,電力電子設備(特別一次設備)應符合電磁發射水平,電子設備、電子儀器應滿足電磁兼容性要求。
|
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。