国产一级a毛一级a看免费视频,久久久久久国产一级AV片,免费一级做a爰片久久毛片潮,国产精品女人精品久久久天天,99久久久无码国产精品免费了

產品推薦:氣相|液相|光譜|質譜|電化學|元素分析|水分測定儀|樣品前處理|試驗機|培養箱


化工儀器網>技術中心>專業論文>正文

歡迎聯系我

有什么可以幫您? 在線咨詢

基于集成卷積和圖神經網絡的復合材料微觀結構力學場預測

來源:凱爾測控試驗系統(天津)有限公司   2025年01月13日 10:09  
摘要:文章介紹了 CompINet,一個結合圖神經網絡和卷積神經網絡來預測復合材料微觀結構中力學場的框架。準確分析局部力學場(如應力)對于預測復合材料性能、失效和制定修復策略至關重要。CompINet 利用圖神經網絡的力量來捕捉復合材料的微觀細節,特別是纖維的位置和它們之間的距離。該框架在預測復合材料微觀結構中的微觀尺度機械場方面取得了顯著的準確性和一致性,而所需的數據量比現有的數據驅動方法少 20 倍。CompINet 在線性和非線性復合材料分析方面都提供了顯著的改進。


PART 01

一.引言



復合材料因其優異的力學性能和輕質特性,在航空航天、汽車、生物醫學等領域應用廣泛。然而,復合材料微觀結構的復雜性和非線性力學行為給其力學分析和設計帶來了挑戰。傳統的分析方法如有限元分析 (FEA) 和解析方法存在適用性有限、計算成本高等局限性。機器學習方法,尤其是卷積神經網絡 (CNN) 和圖神經網絡 (GNN),為復合材料力學分析提供了新的思路,但現有方法仍面臨數據需求量大、缺乏物理信息等問題。

近日,在《Composites Part A》期刊發表了一篇由美國科羅拉多大學博爾德分校航空航天工程科學系的研究團隊完成的有關基于集成卷積和圖神經網絡的復合材料微觀結構力學場預測的研究成果。該研究提出了一種名為 CompINet 的深度學習框架,通過結合卷積神經網絡和圖神經網絡,更準確、更高效地預測復合材料微觀結構中的力學場分布,為復合材料力學分析和設計提供了新的思路和方法。論文標題為“Integrated convolutional and graph neural networks for predicting mechanical fields in composite microstructures”。




PART 02

二.集成深度網絡結構


CompINet 框架結合了 CNN 和 GNN 的優勢,能夠更全面地捕捉復合材料微觀結構的特征。CNN 用于處理復合材料微觀結構的像素級表示,而 GNN 用于捕獲纖維之間的相互作用和關系。


圖 1 復合材料微觀結構的兩種表示方式:(A) 像素級二值圖像;(B) 圖網絡。

圖 2  CompINet 架構圖


PART 03

三.數據生成與訓練


研究人員使用隨機纖維生成算法構建了碳纖維增強復合材料的微觀結構表示,并使用非線性粘聚界面增強廣義有限元方法 (IGFEM) 進行數值模擬,以獲得相應的應力分布。研究選擇了 60% 和 47% 兩種纖維體積分數,并在兩種加載條件下(線性彈性和非線性損傷)預測了應力場分布。

圖 3  (A) 邊界條件和施加荷載的示意圖;(B) 加載條件下,樣本微觀結構的宏觀應力-應變曲線。所選線性馮·米塞斯應力場 (I) 對應于 0.024% 的應變,而非線性馮·米塞斯應力場 (II) 對應于最大宏觀應力。宏觀應力是通過將微觀結構左側邊緣節點的反力之和除以橫截面積計算得出的。

使用隨機生成的微觀結構和對應的應力場數據對 CompINet 進行訓練。為了減少訓練數據的需求,研究人員采用了數據增強技術,例如垂直翻轉圖像。CompINet 使用平均絕對誤差 (MAE) 作為損失函數,并通過調整超參數來優化模型性能。

將 CompINet 的預測結果與基線模型 (U-Net) 進行了比較。結果表明,CompINet 在預測線性應力和非線性應力方面均優于基線模型,并且使用更少的訓練數據即可達到更高的準確率。


PART 04

四.小結

該研究提出了一種名為 CompINet 的新型框架,該框架結合了卷積神經網絡 (CNN) 和圖神經網絡 (GNN) 來預測復合材料微觀結構中的力學場分布。該框架在預測線性應力和非線性應力方面均優于基線模型,并且使用更少的訓練數據即可達到更高的準確率。CompINet 為復合材料力學分析和設計提供了新的思路和方法,具有重要的理論和實際意義。


圖 4  CompINet 和基線模型預測線性應力場的比較。

圖 5  CompINet 和基線模型預測非線性應力場的比較。



免責聲明

  • 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
  • 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
  • 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。
企業未開通此功能
詳詢客服 : 0571-87858618
主站蜘蛛池模板: 阳江市| 蛟河市| 思茅市| 龙陵县| 大方县| 盈江县| 永兴县| 桃园县| 临漳县| 张家川| 运城市| 广元市| 双桥区| 都安| 朔州市| 泾源县| 茶陵县| 乌兰察布市| 宜宾市| 开鲁县| 连城县| 江北区| 平舆县| 建昌县| 沁源县| 达孜县| 安阳县| 邵东县| 星座| 天全县| 涟水县| 西贡区| 鹤壁市| 岳池县| 上虞市| 平原县| 疏勒县| 孝义市| 益阳市| 泊头市| 凤翔县|