與可再生能源電解水制氫技術相比,通過提純工業(yè)副產(chǎn)氫獲取燃料氫氣是現(xiàn)階段更廉價的制氫方式。金屬氧化物構成的氧離子傳導膜具有對氧*的選擇性,將高溫水分解反應和工業(yè)副產(chǎn)氫燃燒反應耦合在致密氧離子傳導膜的兩側,可實現(xiàn)低純氫氣燃燒反應,進而驅動膜另一側水分解,直接獲得不含一氧化碳的氫氣,用于氫燃料電池。然而,氧離子傳導膜通常暴露在含H2、CO2、H2S、H2O、CH4等氣氛中,因而常見含鈷或鐵的膜材料面臨抗還原腐蝕性能差的問題。因此,亟需開發(fā)適用于副產(chǎn)氫提純的氧離子傳導膜,為分布式氫能的發(fā)展提供技術支撐。
在前期氧離子傳導膜材料開發(fā)基礎的上(Angew.Chem.Int.Ed. 2021,60,5204-5208;Chem.Mater. 2019,31,7487-7492;AIChE J. 2019,65,e16740),近日,中國科學院青島生物能源與過程研究所膜分離與催化研究組研究員江河清提出界面反應-自組裝技術在陶瓷氧化物膜表面構筑一層超薄氧離子傳導致密膜,形成多層結構陶瓷膜,用于穩(wěn)定高效地提純工業(yè)副產(chǎn)氫,制取不含CO的氫氣。與傳統(tǒng)制膜工藝對比,研究利用該技術原位構筑的氧離子傳導膜非常薄(~1 μm),致密并且牢固地粘附在支撐層上,從而既可顯著降低氧離子傳輸阻力,又能避免薄膜分層或剝離,保持多層結構陶瓷膜的完整性。另外,該過程只需一步熱處理,有望降低多層結構陶瓷膜的制備成本。該方法適用于十余種不同的陶瓷體系,具有較好的普適性,其中氧離子傳導薄膜包含Ce0.9Gd0.1O2-δ、Y0.08Zr0.92O2-δ、Ce0.9Pr0.1O2-δ、Ce0.9Sm0.1O2-δ等。科研人員將開發(fā)的具超薄氧離子傳導膜的多層結構陶瓷膜作為膜反應器進行工業(yè)副產(chǎn)氫提純,在H2、CH4、CO2、H2S、H2O氣氛下連續(xù)穩(wěn)定運行超過1000個小時,展現(xiàn)出優(yōu)異的穩(wěn)定性和制氫性能。
該研究開發(fā)出的高性能氧離子傳導膜有望為工業(yè)副產(chǎn)氫提純、固體氧化物燃料電池/電解池及氧傳感器等提供技術支撐,并為制備其他具功能薄層的高性能多層結構陶瓷提供新策略。近期,相關研究成果發(fā)表在《德國應用化學》上,并已申請一項中國發(fā)明和一項國際發(fā)明。
研究工作得到國家重點研發(fā)計劃、國家自然科學基金、中科院國際合作局對外合作重點項目、中科院青年創(chuàng)新促進會等的支持。
界面反應-自組裝技術制備多層結構氧離子傳導膜
文章來源:全球氫能網(wǎng)
注:已獲得轉載權
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,未經(jīng)本網(wǎng)授權不得轉載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,應在授權范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關法律責任。
- 本網(wǎng)轉載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內(nèi)容、版權等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關權利。