国产一级a毛一级a看免费视频,久久久久久国产一级AV片,免费一级做a爰片久久毛片潮,国产精品女人精品久久久天天,99久久久无码国产精品免费了

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國(guó)布魯克海文儀器公司>資料下載>測(cè)量應(yīng)用案例-20200702

資料下載

測(cè)量應(yīng)用案例-20200702

閱讀:140          發(fā)布時(shí)間:2020-7-6
提 供 商 美國(guó)布魯克海文儀器公司 資料大小 3.1MB
資料圖片 下載次數(shù) 17次
資料類型 PDF 文件 瀏覽次數(shù) 140次
免費(fèi)下載 點(diǎn)擊下載    
 文獻(xiàn)名: The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate

 

作者 Afshin Malekia, Farzaneh Moradia, Behzad Shahmoradia, Reza Rezaeea, Seung-Mok Leeb

a    Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

b    Department of Environmental Engineering, Catholic Kwandong University, Ganeung, 25601, South Korea

 

摘要:Diazinon is an important organophosphorus pesticide with extensive use, which is considered to be a major health hazard for humans due to its adverse effects on cholinesterase activity and central nervous system. The entry of diazinon into water resources affects a wide range of non-target organisms, which highlights the importance of its removal from water resources. The present study aimed to synthesize and use WO3 doped ZnO nanocatalyst to degrade diazinon. Zinc oxide nanoparticles were synthesized using the hydrothermal method and doped with 0.5%, 1%, and 2% M tungsten oxide. Moreover, the effects of dopant percentage, pH, the initial concentration of diazinon, nanoparticle dosage, and contact time were investigated. The results of EDS revealed that W was doped into ZnO structure. The maximum diazinon degradation (99%) was obtained using 10 mg/cm−2 2% WO3 doped ZnO, 10?mg/l diazinon, neutral pH value and contact time of 180?min. Removal efficiency was decreased by increasing pH and initial diazinon concentration. The experimental kinetic data followed the pseudo-first order model. The reaction rate constant (kobs) was decreased from 0.0205 to 0.0034 1/min with increasing initial diazinon concentration from 10 to 200?mg/L, respectively. The figures of merit based on electric energy consumption (EEO) indicate that less energy is consumed during the degradation of diazinon in the presence of 2% WO3 doped ZnO compared with other photocatalysts. Therefore, it could be concluded that 2%WO3 doped ZnO is a promising material for photocatalytic degradation of diazinon with high efficiency under optimal condition.

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 意見反饋 在線交流

掃一掃訪問(wèn)手機(jī)商鋪
010-62081908
在線留言
主站蜘蛛池模板: 绍兴县| 武城县| 前郭尔| 安泽县| 辰溪县| 绥德县| 大理市| 双牌县| 洛扎县| 修文县| 静安区| 万宁市| 故城县| 东光县| 金湖县| 府谷县| 淄博市| 龙南县| 南澳县| 彰化市| 内丘县| 古浪县| 琼结县| 莱阳市| 青州市| 凤山县| 武隆县| 托里县| 石屏县| 安庆市| 贡觉县| 南澳县| 凭祥市| 富锦市| 错那县| 文登市| 清新县| 前郭尔| 赞皇县| 岳池县| 华蓥市|