国产一级a毛一级a看免费视频,久久久久久国产一级AV片,免费一级做a爰片久久毛片潮,国产精品女人精品久久久天天,99久久久无码国产精品免费了

浙江以象科技有限公司
中級會員 | 第1年

18457147929, 13867128415

主動學習對基于圖像的植物表型

時間:2024/8/20閱讀:150
分享:

主動學習對基于圖像的植物表型


  深度學習模型已經成功地應用于各種基于圖像的植物表型應用,包括疾病檢測和分類。然而,有監督的深度學習模型的成功部署需要大量的標記數據,

由于固有的復雜性,這在植物科學(和大多數生物學)領域是一個重大挑戰。具體來說,數據注釋是昂貴的、費力的、耗時的,并且需要用于表型任務的領域專業知識,

尤其是對于疾病。為了克服這一挑戰,已經提出了主動學習算法來減少深度學習模型所需的標記量,以實現良好的預測性能。

74fa3989be18a26baeef5add7490a2e7_20220830144650416.jpg

                                       在大豆葉子上收集的九類數據(八類應激數據和一類健康數據),其中包括第一個數據集

主動學習方法通過使用采集函數自適應地建議樣本進行注釋來工作,以在固定標記預算下實現最大(分類)性能。

報告了四種不同的主動學習方法的性能,(1)深度貝葉斯主動學習(DBAL),(2)熵,(3)最小置信度,(4)核心集,

基于傳統的隨機采樣標注的兩種不同的基于圖像的分類數據集。

db4b1fcc89d33f474a6f9d7778bab47a_20220830144703268.jpg

                                                           第二個數據集的九個類別包括八個雜草種類和一個無雜草類別

第一個圖像數據集由屬于八種不同大豆脅迫和健康類別的大豆 [Glycine max L. (Merr.)] 葉子組成,

第二個圖像數據集由來自田間的九種不同雜草組成。對于固定的標記預算,對于兩個數據集,

使用基于主動學習的獲取策略的深度學習模型的分類性能優于基于隨機采樣的獲取。

數據注釋的主動學習策略的集成可以幫助減輕植物科學應用中的標簽挑戰,特別是在專用于注釋的資源有限的情況下。



會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
撥打電話
在線留言
主站蜘蛛池模板: 博野县| 盐源县| 广河县| 南开区| 乐平市| 仙桃市| 游戏| 桐乡市| 南靖县| 乌海市| 东兴市| 乐陵市| 乐都县| 桃江县| 盐源县| 东乡族自治县| 米脂县| 邵阳县| 上饶县| 沁阳市| 麻栗坡县| 绥江县| 溧阳市| 得荣县| 和硕县| 囊谦县| 安国市| 前郭尔| 尉犁县| 昭通市| 金坛市| 安丘市| 尼木县| 方山县| 阳山县| 乌拉特前旗| 雅江县| 华安县| 阳西县| 岳池县| 莆田市|