首頁 >> 供求商機
EddyPro®是一款功能強大的渦度協方差數據處理軟件,用于計算CO2、H2O、CH4、其它痕量氣體和能量通量。EddyPro®野外版隨SmartFlux® 2系統安裝野外渦度監測站上,可實時提供處理完成的通量數據。EddyPro®本地版可安裝在您的個人電腦上,可選擇各種處理方法對儀器獲取的原始數據做深度分析。
在Express模式可以快速簡便地處理常見設置的數據,而Advanced模式則具有多種選項,可供專家級研究者靈活選擇。
選擇EddyPro®渦度協方差數據處理軟件的理由
支持SmartFlux® 2系統,用于野外實時通量計算
整合Biomet生物氣象傳感器系統和通量系統的數據計算
輸出結果是Tovi渦度協方差數據分析軟件的一款數據源
使用分析和實地方法進行復雜的譜線評估(Comprehensive spectral assessment using both analytical and in situ methods)
可實現絕大多數渦度協方差研究的準確通量計算
簡單易學——從事渦度協方差研究的新手也能很快掌握
方便使用——輕松點擊即可完成多步程序的運行
可直接運行LI-COR渦度協方差系統的GHG數據
基于IMECC* 平臺開發,結果經EdiRE及其他多款常用軟件所驗證
默認設置及參數均以常用的常規通量計算方法為基礎
可提供GHG-Europe和AmeriFlux標準格式數據輸出
完整的在線視頻教程
智能程序管理,便于原始數據的重計算
由專業的LI-COR技術支持團隊研發和維護
* 注:IMECC即Infrastructure for Measurements of the European Carbon Cycle
EddyPro Express VS EddyPro Advanced
EddyPro Express (默認修正,快速方便) | EddyPro Advanced (用戶可選,強大靈活) | |
坐標旋轉修正 | 二次坐標軸旋轉 | 二次坐標軸旋轉 三次坐標軸旋轉 基于風區的平面坐標擬合 基于風區無速率偏差的平面坐標擬合 不做修正 |
除趨勢修正 | 塊平均 | 塊平均 線性除趨勢 滑動平均 指數加權平均 |
數據同步 | 默認值下最大協方差(循環相關) | 默認值下最大協方差 默認值缺失下的最大協方差 常量 不做修正 |
統計檢驗 | 異常值計數/去除 振幅分辨率 缺失值 絕對限度 偏度和峰度 | 異常值計數/去除 振幅分辨率 缺失值 絕對限度 偏度和峰度 間斷點 時滯 迎角 水平風穩定度 不做檢測 |
密度修正 | 通過WPL修正(Webb 等,1980)或點對點轉換的方式換算為混合比 | 使用(或換算成)混合比(Burba 等,2011) 就開路渦度系統而言,通過Webb 等(1980)方法進行修正; 就閉路渦度系統而言,通過lbrom 等,(2007)方法進行修正 針對LI-7500的非生長季吸收修正(Burba 等,2008) 不做修正 |
超聲虛溫修正 | Van Dijk等(2004) | Van Dijk 等(2004) |
譜修正 | 高通濾波修正(Moncrieff等,2004) 低通濾波修正(Moncrieff等,1997) | 高通濾波修正(Moncrieff等,2004) 低通濾波修正,可選: Moncrieff等(1997) |
迎角修正 | 是 | 是 |
數據質量控制標記 | 依據Foken等(2004)進行檢測 | 根據Mauder和Foken(2004)進行檢測 根據Foken(2003)進行標記 在進行這項操作(Gockede等,2004)之后進行標記 |
足跡估測 | Kljun等(2004) | Kljun等(2004) Kormann和Meixner (2001) Hsieh等(2000) |
LI-7700光譜修正 | 是(McDermitt等, 2010) | 是(McDermitt等, 2010) |
文件輸出 | 通量、質量標記和其他數據完整輸出 美國通量數據格式 GHG 歐洲通量數據格式 原始數據統計 | 列表可選: 通量、質量標記和其他數據完整輸出 美國通量數據格式 GHG 歐洲通量數據格式 原始數據統計 全長度譜和協譜分析 箱式譜和協譜分析 箱式累積頻率 穩態和湍流檢測細節 每次統計檢測/修正之后的時間序列原始數據 |
References:
Foken, T., M. G?ckede, M. Mauder, L. Mahrt, B. D. Amiro, and J. W. Munger. 2004. Post-field data quality control. In X. Lee, et al. (ed.), Handbook of Meteorology. 35: 409-414.
Fratini, G., N. Arriga, C. Trotta, D. Papale. 2010. Underestimation of water vapour fluxes by eddy covariance closed-path systems due to relative humidity effects. American Geophysical Union Fall Meeting. Abstract #B11D-0400.
G?ckede, M., C. Rebmann, T. Foken, 2004. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agricultural and Forest Meteorology, 127: 175-188.
Horst, T. W. 1997. A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary Layer Meteorology, 82: 219-233.
Ibrom, A., E. Dellwik, H. Flyvbjerg, N. O. Jensen, and K. Pilegaard. 2007. Strong low-pass filtering effects on water vapour flux measurements with closed path eddy covariance systems. Agricultural and Forest Meteorology, 147: 140-156.
Kaimal, J. C., and J. E. Gaynor. 1991. Another look at sonic thermometry, Boundary Layer Meteorology, 56: 401-410.
Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid. 2004. A simple parameterization for flux footprint predictions. Boundary Layer Meteorology, 112: 503-523.
McDermitt, D., G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, and W. Oechel, S. Oberbauer, and S. Hastings. 2010. A new low-power, open path instrument for measuring methane flux by eddy covariance. Applied Physics B: Laser and Optics, 102: 391-405.
Moncrieff, J. B., R. Clement, J. Finnigan, and T. Meyers. 2004. Averaging, detrending and filtering of eddy covariance time series, in Handbook of micrometeorology: A guide for surface flux measurements, eds. Lee, X., W. J. Massman and B. E. Law. Dordrecht: Kluwer Academic, 7-31.
Moncrieff, J. B., J. M. Massheder, H. de Bruin, J. Elbers, T. Friborg, B. Heusinkveld, P. Kabat, S. Scott, H. Soegaard, and A. Verhoef. 1997. A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. Journal of Hydrology, 188-189: 589-611.
Schuepp, P. H., M. Y. Leclerc, J. I. MacPherson, and R. L. Desjardins. 1990. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary Layer Meteorology, 50: 355-373.
Van Dijk, A., A. F. Moene, and H. A. R. de Bruin. 2004. The principles of surface flux physics: Theory, practice and description of the ECPACK library, Internal Report 2004/1, Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands, 99 pp.
Vickers, D. and L. Mahrt. 1997. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14: 512-526.
Webb, E. K., G. I. Pearman, and R. Leuning. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106: 85-100.