X熒光光譜儀的原理和優勢
當能量高于原子內層電子結合能的高能X射線與原子發生碰撞時,驅逐一個內層電子而出現一個空穴,使整個原子體系處于不穩定的激發態,激發態原子壽命約為 (10)-12-(10)-14s,然后自發地由能量高的狀態躍遷到能量低的狀態,這個過程稱為馳過程。
馳豫過程既可以是非輻射躍遷,也可以是輻射躍遷.當較外層的電子躍遷到空穴時,所釋放的能量隨即在原子內部被吸收而逐出較外層的另一個次級光電子,此稱為俄歇效應,亦稱次級光電效應或*效應,所逐出的次級光電子稱為俄歇電子。 它的能量是特征的,與入射輻射的能量無關.當較外層的電子躍入內層空穴所釋放的能量不在原子內被吸收,而是以輻射形式放出,便產生X 射線熒光,其能量等于兩能級之間的能量差。因此,X射線熒光的能量或波長是特征性的,與元素有一一對應的關系。
K層電子被逐出后,其空穴可以被外 層中 任一電子所填充,從而可產生一系列的譜線,稱為K系譜線:由L層躍遷到K層輻射的X射線叫Kα射線,由M層躍遷到K層輻射的X射線叫Kβ射線 ……。 同樣,L層電子被逐出可以產生L系輻射.如果入射的X 射線使某元素的K層電子激發成光電子后L層電子躍遷到K層,此時就有能量ΔE釋放出來,且 ΔE=EK-EL,這個能量是以X射線形式釋放,產生的就是Kα 射線,同樣還可以產生Kβ射線 ,L系射線等。
莫斯萊(H.G.Moseley) 發現,熒光X射線的 波長λ與元素的原子 序數Z有關,其數學關系如下: λ=K(Z-s)-2 這就是莫斯萊定律,式中K和S是常數,因此,只要測出熒光X射線的波長,就可以知道元素的種類,這 就是熒光X射線定性分析的基礎。此外,熒光X射線的強度與相應元素的含量有一定的關系,據此,可以 進行元素定量分析。
X熒光光譜儀優勢:
分析速度快。測定用時與測定精密度有關,但一般都很短,2~5分鐘就可以測完樣品中的全部待測元素。
X射線熒光光譜跟樣品的化學結合狀態無關,而且跟固體、粉末、液體及晶質、非晶質等物質的狀態也基本上沒有關系。(氣體密封在容器內也可分析)但是在高分辨率的精密測定中卻可看到有波長變化等現象。特別是在超軟X射線范圍內,這種效應更為顯著。波長變化用于化學位的測定。
非破壞分析。在測定中不會引起化學狀態的改變,也不會出現試樣飛散現象。同一試樣可反復多次測量,結果重現性好。
X射線熒光分析是一種物理分析方法,所以對在化學性質上屬同一族的元素也能進行分析。
分析精密度高。
制樣簡單,固體、粉末、液體樣品等都可以進行分析。