![]() |
上海壹僑國(guó)際貿(mào)易有限公司
主營(yíng)產(chǎn)品: FILA,DEBOLD,ESTA,baumer,bernstein,bucher,PILZ,camozzi,schmalz |
會(huì)員.png)
聯(lián)系電話
![]() |
上海壹僑國(guó)際貿(mào)易有限公司
主營(yíng)產(chǎn)品: FILA,DEBOLD,ESTA,baumer,bernstein,bucher,PILZ,camozzi,schmalz |
聯(lián)系電話
參考價(jià) | 面議 |
更新時(shí)間:2025-02-01 12:45:03瀏覽次數(shù):603
聯(lián)系我們時(shí)請(qǐng)說(shuō)明是化工儀器網(wǎng)上看到的信息,謝謝!
產(chǎn)地類(lèi)別 | 進(jìn)口 |
---|
2006年11月17日,由北京市焊接學(xué)會(huì)主辦,北京市焊接協(xié)會(huì)、北京市焊接設(shè)備技術(shù)中心、北京工業(yè)大學(xué)焊接研究所、珠海福尼斯焊接技術(shù)有限公司和北京工大宏遠(yuǎn)焊接技術(shù)有限公司共同協(xié)辦的"奧地利福尼斯數(shù)字化焊接技術(shù)交流會(huì)"在北京工業(yè)大學(xué)逸夫圖書(shū)館召開(kāi)。參加會(huì)議的有北京衛(wèi)星制造廠、首都航天機(jī)械公司、北京奔馳、韓國(guó)現(xiàn)代汽車(chē)、北京東升焊接制造廠等50多家單位的120余名代表。在交流會(huì)上,北京市焊接設(shè)備技術(shù)中心主任殷樹(shù)言教授做了"數(shù)字化技術(shù)在焊接設(shè)備上應(yīng)用的發(fā)展走向"的報(bào)告;福尼斯公司亞太地區(qū)技術(shù)總監(jiān)克里斯多夫·卡瑪琥伯做了"數(shù)字化技術(shù)在焊接中的應(yīng)用"和"高效焊接自動(dòng)化"的主題發(fā)言;北京工業(yè)大學(xué)的陳志翔博士做了"激光視覺(jué)傳感技術(shù)在數(shù)字化焊接中的應(yīng)用"的報(bào)告。會(huì)議內(nèi)容主要涉及:數(shù)字化焊接技術(shù)革命、數(shù)字化技術(shù)在焊接中的應(yīng)用、數(shù)字化焊機(jī)展示、焊機(jī)功能拓展焊機(jī)升級(jí)、福尼斯焊接自動(dòng)化;焊接技術(shù)問(wèn)題的解答與交流
HANSA-FLEX CEL28 DGV MG 截止閥
HANSA GEHRED04HB 管接頭
HANSA W90HROK04HB 管接頭
HANSA 13-084 GEHRED04HB 接頭
HANSA 13-084 W90HROK04HB 接頭
HANSA DKI1/2 密封圈
HANSA RILNW1325 密封圈
HANSA V42GJ4RF40X;S/N HFW0036 液壓泵
HANSA-FLEX PNY104 X 800 AOL90 PRüFEN VERDREHWKL. 定量閥
HANSA-FLEX PNY106 X 1300 AOL04 AOL90 分壓器
HANSA-FLEX CEL28 DGV MG 截止閥
HANSA-FLEX BKR25NDROV 球閥
HANSA-FLEX BKR13NDROV 球閥
HANSA-FLEX BKR06NDROV 球閥
HANSA-FLEX BKR20NDROV 球閥
HANSA-FLEX BKR10NDROV 球閥
HANSA-TMP S.r.l GL315-VMR 泵
HANSA-TMP S.r.l. PWD 3300/CF-AP/../A.D.646 電機(jī)
Hans-Juergen Kasprich KE 電磁閥
Hans-Juergen Kasprich E36-LLR-F50-24VDC 70%ED 電磁鐵
Hans-Juergen Kasprich AirBox K-F-SW-BI / Ident-Nr: 93.026 總線模塊
Happich 4610044 100M 邊緣護(hù)體
Harald Ladusch Industrievertretung 11E002214 / EAGS0510/115-230 變壓器
Rohm GmbH 586214,EINBAUSPANNSATZ HSK-C63 鎖緊裝置
Rohm GmbH 1004880 軸心
rohmann KDS 2-2 Metall 傳感器
rohmann KDS 2-2 Metall 傳感器
rohmann EK-3-HF/2 3m 帶接頭電纜
rohmann EK-3-007 電纜
rohmann EK-3-007 電纜
rohmann EK-3-HF/2 3m 電纜
rohmann EK-3-007 電纜
rohmann EK-3-007 電纜
rohmann EK-3-007 電纜
rohmann EK-3-007 電纜
rohmann EK-3-HF/2 3m 電纜
rohmann EK-3-HF/2 3m 電纜
rohmann EK-3-007 附件(電纜)
rohmann EK-3-007 附件(電纜)
rohmann ELOTEST IS/ MC - 12CH Grundgeraet im 19"- Gehaeu 工控機(jī)
rohmann KDS 2-2 Metall 探傷儀
rohmann KA-33 H-1644.06.1 探傷儀探頭
rohmann KD-1 H-1561 02.1 探傷儀探頭
rohmann 600217 KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann KDS 2-2 Metall 探傷儀探頭
rohmann Nr.601177;KDFA-5 H-94.02.1 探頭
rohmann Nr.601177;KDFA-5 H-94.02.1 探頭
Rohrlux 361123-01 LED燈
Rohrlux 361123-01 LED燈
Rohrlux HL 48-20W-24V SP. S 400 G1 ,B-Nr : 60120701 , IP 54 燈
Rohrlux 381800-00 燈管
早在1738年,瑞士人丹尼爾*伯努利以伯努利方程為基礎(chǔ)利用差壓法測(cè)量水流量。后來(lái)意大利人G.B.文丘里研究用文丘里管測(cè)量流量,并于1791年發(fā)表了研究結(jié)果。1886年,美國(guó)人C.赫謝爾用文丘里管制成測(cè)量水流量的實(shí)用裝置20世紀(jì)初期到中期,原有的測(cè)量原理逐漸成熟,人們開(kāi)始探索新的測(cè)量原理自1910年起美國(guó)開(kāi)始研制測(cè)量明溝中水流量的槽式流量計(jì)。1922年,R.L.帕歇爾將原文丘里水槽改革為帕歇爾水槽(于1929年為美國(guó)土木工程師協(xié)會(huì)所命名)。1911~1912年,美籍匈牙利人 T.von卡門(mén)提出卡門(mén)渦街的新理論。30年代出現(xiàn)探討用聲波測(cè)量液體和氣體的流速的方法,但到第二次世界大戰(zhàn)為止未獲很大進(jìn)展,直到1955年才有應(yīng)用聲循環(huán)法(兩組型)的馬克森流量計(jì),用于測(cè)量航空燃料的流量。1945年,A.科林用交變磁場(chǎng)成功地測(cè)量了血液流動(dòng)的情況。60年代以后,儀表向精密化、小型化等方向發(fā)展。例如,為了提高差壓儀表的精確度而出現(xiàn)力平衡差壓變送器和電容式差壓變送器;為使電磁流量計(jì)的傳感器小型化和改善信噪比而出現(xiàn)用非均勻磁場(chǎng)和低頻勵(lì)磁方式的電磁流量計(jì)。隨著集成電路技術(shù)的迅速發(fā)展,具有鎖相環(huán)路技術(shù)的超聲(波)流量計(jì)也得到了普遍應(yīng)用。微型計(jì)算機(jī)的廣泛應(yīng)用,進(jìn)一步提高了流量測(cè)量的能力,如激光多普勒流速計(jì)應(yīng)用微型計(jì)算機(jī)可處理較為復(fù)雜的信號(hào)。
美國(guó)早在1886年即發(fā)布過(guò)*個(gè)TUF,1914年的認(rèn)為T(mén)UF的流量與頻率有關(guān)。美國(guó)的*臺(tái)TUF是在1938年開(kāi)發(fā)的,它用于飛機(jī)上燃油的流量測(cè)量,只是直至二戰(zhàn)后因噴氣發(fā)動(dòng)機(jī)和液體噴氣燃料急需一種高精度、快速響應(yīng)的流量計(jì)才使它獲得真正的工業(yè)應(yīng)用。如今,它已在石油、化工、科研、國(guó)防、計(jì)量各部門(mén)中獲得廣泛應(yīng)用。
流量測(cè)量最早是由瑞士人開(kāi)始的,在1738年,瑞士較有名的物理學(xué)家丹尼爾·伯努利以伯努利方程為基礎(chǔ),利用了差壓法測(cè)量了水流量。
后來(lái),意大利物理學(xué)家文丘里又用文丘里管測(cè)量了流量,并發(fā)表了研究成果。
1886年,美國(guó)人赫謝爾應(yīng)用文丘里管制成了測(cè)量水流量的的實(shí)用測(cè)量裝置。
20世紀(jì)初期到中期,原有的測(cè)量原理逐漸走向成熟,人們不再將思路局限在原有的測(cè)量方法上,而是開(kāi)始了新的探索。1910年時(shí),美國(guó)人開(kāi)始了槽式流量計(jì)的研究工作,這種流量計(jì)是用來(lái)測(cè)量明溝中水流量的。1922年,帕歇爾將水槽測(cè)量改革為帕歇爾水槽。
槽式流量計(jì)發(fā)展的同時(shí),美籍匈牙利人卡門(mén)正在研究渦街理論,1911年到1912年,他提出了卡門(mén)渦街新理論。
到了30年代,又出現(xiàn)了探討用聲波測(cè)量液體和氣體的流速的方法聲波測(cè)量流量的方法,但到第二次世界大戰(zhàn)為止未獲得很大進(jìn)展,直到1955才有了應(yīng)用聲循環(huán)法的馬克森流量計(jì)的問(wèn)世,用于測(cè)量航空燃料的流量。
1945年,科林用交變磁場(chǎng)成功的測(cè)量了血液流動(dòng)的情況。
20世紀(jì)的60年代以后,測(cè)量?jī)x表開(kāi)始向精密化、小型化等方向發(fā)展。例如,為了提高了差壓儀表的精確度,出現(xiàn)了力平衡差壓變送器和電容式差壓變送器;為了使電磁流量計(jì)的傳感小型化和改善信噪比,出現(xiàn)了用非均勻磁場(chǎng)和低頻勵(lì)磁方式的電磁流量計(jì),此外,具有寬測(cè)量范圍和無(wú)活動(dòng)檢測(cè)部件的實(shí)用卡門(mén)渦街流量計(jì),也在70年代問(wèn)世。
隨著集成電路技術(shù)的迅速發(fā)展,具有鎖相環(huán)路技術(shù)的超聲(波)流量計(jì)也得到了普遍應(yīng)用,微型計(jì)算機(jī)的廣泛應(yīng)用,進(jìn)一步提高了流量測(cè)量的能力,如激光多普勒流速計(jì)應(yīng)用微型計(jì)算機(jī)后,可處理較為復(fù)雜的信號(hào)。
早在1738年,瑞士人丹尼爾*伯努利以伯努利方程為基礎(chǔ)利用差壓法測(cè)量水流量。后來(lái)意大利人G.B.文丘里研究用文丘里管測(cè)量流量,并于1791年發(fā)表了研究結(jié)果。1886年,美國(guó)人C.赫謝爾用文丘里管制成測(cè)量水流量的實(shí)用裝置20世紀(jì)初期到中期,原有的測(cè)量原理逐漸成熟,人們開(kāi)始探索新的測(cè)量原理自1910年起美國(guó)開(kāi)始研制測(cè)量明溝中水流量的槽式流量計(jì)。1922年,R.L.帕歇爾將原文丘里水槽改革為帕歇爾水槽(于1929年為美國(guó)土木工程師協(xié)會(huì)所命名)。1911~1912年,美籍匈牙利人 T.von卡門(mén)提出卡門(mén)渦街的新理論。30年代出現(xiàn)探討用聲波測(cè)量液體和氣體的流速的方法,但到第二次世界大戰(zhàn)為止未獲很大進(jìn)展,直到1955年才有應(yīng)用聲循環(huán)法(兩組型)的馬克森流量計(jì),用于測(cè)量航空燃料的流量。1945年,A.科林用交變磁場(chǎng)成功地測(cè)量了血液流動(dòng)的情況。60年代以后,儀表向精密化、小型化等方向發(fā)展。例如,為了提高差壓儀表的精確度而出現(xiàn)力平衡差壓變送器和電容式差壓變送器;為使電磁流量計(jì)的傳感器小型化和改善信噪比而出現(xiàn)用非均勻磁場(chǎng)和低頻勵(lì)磁方式的電磁流量計(jì)。隨著集成電路技術(shù)的迅速發(fā)展,具有鎖相環(huán)路技術(shù)的超聲(波)流量計(jì)也得到了普遍應(yīng)用。微型計(jì)算機(jī)的廣泛應(yīng)用,進(jìn)一步提高了流量測(cè)量的能力,如激光多普勒流速計(jì)應(yīng)用微型計(jì)算機(jī)可處理較為復(fù)雜的信號(hào)。
美國(guó)早在1886年即發(fā)布過(guò)*個(gè)TUF,1914年的認(rèn)為T(mén)UF的流量與頻率有關(guān)。美國(guó)的*臺(tái)TUF是在1938年開(kāi)發(fā)的,它用于飛機(jī)上燃油的流量測(cè)量,只是直至二戰(zhàn)后因噴氣發(fā)動(dòng)機(jī)和液體噴氣燃料急需一種高精度、快速響應(yīng)的流量計(jì)才使它獲得真正的工業(yè)應(yīng)用。如今,它已在石油、化工、科研、國(guó)防、計(jì)量各部門(mén)中獲得廣泛應(yīng)用。
流量測(cè)量最早是由瑞士人開(kāi)始的,在1738年,瑞士較有名的物理學(xué)家丹尼爾·伯努利以伯努利方程為基礎(chǔ),利用了差壓法測(cè)量了水流量。
后來(lái),意大利物理學(xué)家文丘里又用文丘里管測(cè)量了流量,并發(fā)表了研究成果。
1886年,美國(guó)人赫謝爾應(yīng)用文丘里管制成了測(cè)量水流量的的實(shí)用測(cè)量裝置。
20世紀(jì)初期到中期,原有的測(cè)量原理逐漸走向成熟,人們不再將思路局限在原有的測(cè)量方法上,而是開(kāi)始了新的探索。1910年時(shí),美國(guó)人開(kāi)始了槽式流量計(jì)的研究工作,這種流量計(jì)是用來(lái)測(cè)量明溝中水流量的。1922年,帕歇爾將水槽測(cè)量改革為帕歇爾水槽。
槽式流量計(jì)發(fā)展的同時(shí),美籍匈牙利人卡門(mén)正在研究渦街理論,1911年到1912年,他提出了卡門(mén)渦街新理論。
到了30年代,又出現(xiàn)了探討用聲波測(cè)量液體和氣體的流速的方法聲波測(cè)量流量的方法,但到第二次世界大戰(zhàn)為止未獲得很大進(jìn)展,直到1955才有了應(yīng)用聲循環(huán)法的馬克森流量計(jì)的問(wèn)世,用于測(cè)量航空燃料的流量。
1945年,科林用交變磁場(chǎng)成功的測(cè)量了血液流動(dòng)的情況。
20世紀(jì)的60年代以后,測(cè)量?jī)x表開(kāi)始向精密化、小型化等方向發(fā)展。例如,為了提高了差壓儀表的精確度,出現(xiàn)了力平衡差壓變送器和電容式差壓變送器;為了使電磁流量計(jì)的傳感小型化和改善信噪比,出現(xiàn)了用非均勻磁場(chǎng)和低頻勵(lì)磁方式的電磁流量計(jì),此外,具有寬測(cè)量范圍和無(wú)活動(dòng)檢測(cè)部件的實(shí)用卡門(mén)渦街流量計(jì),也在70年代問(wèn)世。
隨著集成電路技術(shù)的迅速發(fā)展,具有鎖相環(huán)路技術(shù)的超聲(波)流量計(jì)也得到了普遍應(yīng)用,微型計(jì)算機(jī)的廣泛應(yīng)用,進(jìn)一步提高了流量測(cè)量的能力,如激光多普勒流速計(jì)應(yīng)用微型計(jì)算機(jī)后,可處理較為復(fù)雜的信號(hào)。
早在1738年,瑞士人丹尼爾*伯努利以伯努利方程為基礎(chǔ)利用差壓法測(cè)量水流量。后來(lái)意大利人G.B.文丘里研究用文丘里管測(cè)量流量,并于1791年發(fā)表了研究結(jié)果。1886年,美國(guó)人C.赫謝爾用文丘里管制成測(cè)量水流量的實(shí)用裝置20世紀(jì)初期到中期,原有的測(cè)量原理逐漸成熟,人們開(kāi)始探索新的測(cè)量原理自1910年起美國(guó)開(kāi)始研制測(cè)量明溝中水流量的槽式流量計(jì)。1922年,R.L.帕歇爾將原文丘里水槽改革為帕歇爾水槽(于1929年為美國(guó)土木工程師協(xié)會(huì)所命名)。1911~1912年,美籍匈牙利人 T.von卡門(mén)提出卡門(mén)渦街的新理論。30年代出現(xiàn)探討用聲波測(cè)量液體和氣體的流速的方法,但到第二次世界大戰(zhàn)為止未獲很大進(jìn)展,直到1955年才有應(yīng)用聲循環(huán)法(兩組型)的馬克森流量計(jì),用于測(cè)量航空燃料的流量。1945年,A.科林用交變磁場(chǎng)成功地測(cè)量了血液流動(dòng)的情況。60年代以后,儀表向精密化、小型化等方向發(fā)展。例如,為了提高差壓儀表的精確度而出現(xiàn)力平衡差壓變送器和電容式差壓變送器;為使電磁流量計(jì)的傳感器小型化和改善信噪比而出現(xiàn)用非均勻磁場(chǎng)和低頻勵(lì)磁方式的電磁流量計(jì)。隨著集成電路技術(shù)的迅速發(fā)展,具有鎖相環(huán)路技術(shù)的超聲(波)流量計(jì)也得到了普遍應(yīng)用。微型計(jì)算機(jī)的廣泛應(yīng)用,進(jìn)一步提高了流量測(cè)量的能力,如激光多普勒流速計(jì)應(yīng)用微型計(jì)算機(jī)可處理較為復(fù)雜的信號(hào)。
美國(guó)早在1886年即發(fā)布過(guò)*個(gè)TUF,1914年的認(rèn)為T(mén)UF的流量與頻率有關(guān)。美國(guó)的*臺(tái)TUF是在1938年開(kāi)發(fā)的,它用于飛機(jī)上燃油的流量測(cè)量,只是直至二戰(zhàn)后因噴氣發(fā)動(dòng)機(jī)和液體噴氣燃料急需一種高精度、快速響應(yīng)的流量計(jì)才使它獲得真正的工業(yè)應(yīng)用。如今,它已在石油、化工、科研、國(guó)防、計(jì)量各部門(mén)中獲得廣泛應(yīng)用。
流量測(cè)量最早是由瑞士人開(kāi)始的,在1738年,瑞士較有名的物理學(xué)家丹尼爾·伯努利以伯努利方程為基礎(chǔ),利用了差壓法測(cè)量了水流量。
后來(lái),意大利物理學(xué)家文丘里又用文丘里管測(cè)量了流量,并發(fā)表了研究成果。
1886年,美國(guó)人赫謝爾應(yīng)用文丘里管制成了測(cè)量水流量的的實(shí)用測(cè)量裝置。
20世紀(jì)初期到中期,原有的測(cè)量原理逐漸走向成熟,人們不再將思路局限在原有的測(cè)量方法上,而是開(kāi)始了新的探索。1910年時(shí),美國(guó)人開(kāi)始了槽式流量計(jì)的研究工作,這種流量計(jì)是用來(lái)測(cè)量明溝中水流量的。1922年,帕歇爾將水槽測(cè)量改革為帕歇爾水槽。
槽式流量計(jì)發(fā)展的同時(shí),美籍匈牙利人卡門(mén)正在研究渦街理論,1911年到1912年,他提出了卡門(mén)渦街新理論。
到了30年代,又出現(xiàn)了探討用聲波測(cè)量液體和氣體的流速的方法聲波測(cè)量流量的方法,但到第二次世界大戰(zhàn)為止未獲得很大進(jìn)展,直到1955才有了應(yīng)用聲循環(huán)法的馬克森流量計(jì)的問(wèn)世,用于測(cè)量航空燃料的流量。
1945年,科林用交變磁場(chǎng)成功的測(cè)量了血液流動(dòng)的情況。
20世紀(jì)的60年代以后,測(cè)量?jī)x表開(kāi)始向精密化、小型化等方向發(fā)展。例如,為了提高了差壓儀表的精確度,出現(xiàn)了力平衡差壓變送器和電容式差壓變送器;為了使電磁流量計(jì)的傳感小型化和改善信噪比,出現(xiàn)了用非均勻磁場(chǎng)和低頻勵(lì)磁方式的電磁流量計(jì),此外,具有寬測(cè)量范圍和無(wú)活動(dòng)檢測(cè)部件的實(shí)用卡門(mén)渦街流量計(jì),也在70年代問(wèn)世。
隨著集成電路技術(shù)的迅速發(fā)展,具有鎖相環(huán)路技術(shù)的超聲(波)流量計(jì)也得到了普遍應(yīng)用,微型計(jì)算機(jī)的廣泛應(yīng)用,進(jìn)一步提高了流量測(cè)量的能力,如激光多普勒流速計(jì)應(yīng)用微型計(jì)算機(jī)后,可處理較為復(fù)雜的信號(hào)。
早在1738年,瑞士人丹尼爾*伯努利以伯努利方程為基礎(chǔ)利用差壓法測(cè)量水流量。后來(lái)意大利人G.B.文丘里研究用文丘里管測(cè)量流量,并于1791年發(fā)表了研究結(jié)果。1886年,美國(guó)人C.赫謝爾用文丘里管制成測(cè)量水流量的實(shí)用裝置20世紀(jì)初期到中期,原有的測(cè)量原理逐漸成熟,人們開(kāi)始探索新的測(cè)量原理自1910年起美國(guó)開(kāi)始研制測(cè)量明溝中水流量的槽式流量計(jì)。1922年,R.L.帕歇爾將原文丘里水槽改革為帕歇爾水槽(于1929年為美國(guó)土木工程師協(xié)會(huì)所命名)。1911~1912年,美籍匈牙利人 T.von卡門(mén)提出卡門(mén)渦街的新理論。30年代出現(xiàn)探討用聲波測(cè)量液體和氣體的流速的方法,但到第二次世界大戰(zhàn)為止未獲很大進(jìn)展,直到1955年才有應(yīng)用聲循環(huán)法(兩組型)的馬克森流量計(jì),用于測(cè)量航空燃料的流量。1945年,A.科林用交變磁場(chǎng)成功地測(cè)量了血液流動(dòng)的情況。60年代以后,儀表向精密化、小型化等方向發(fā)展。例如,為了提高差壓儀表的精確度而出現(xiàn)力平衡差壓變送器和電容式差壓變送器;為使電磁流量計(jì)的傳感器小型化和改善信噪比而出現(xiàn)用非均勻磁場(chǎng)和低頻勵(lì)磁方式的電磁流量計(jì)。隨著集成電路技術(shù)的迅速發(fā)展,具有鎖相環(huán)路技術(shù)的超聲(波)流量計(jì)也得到了普遍應(yīng)用。微型計(jì)算機(jī)的廣泛應(yīng)用,進(jìn)一步提高了流量測(cè)量的能力,如激光多普勒流速計(jì)應(yīng)用微型計(jì)算機(jī)可處理較為復(fù)雜的信號(hào)。
美國(guó)早在1886年即發(fā)布過(guò)*個(gè)TUF,1914年的認(rèn)為T(mén)UF的流量與頻率有關(guān)。美國(guó)的*臺(tái)TUF是在1938年開(kāi)發(fā)的,它用于飛機(jī)上燃油的流量測(cè)量,只是直至二戰(zhàn)后因噴氣發(fā)動(dòng)機(jī)和液體噴氣燃料急需一種高精度、快速響應(yīng)的流量計(jì)才使它獲得真正的工業(yè)應(yīng)用。如今,它已在石油、化工、科研、國(guó)防、計(jì)量各部門(mén)中獲得廣泛應(yīng)用。
流量測(cè)量最早是由瑞士人開(kāi)始的,在1738年,瑞士較有名的物理學(xué)家丹尼爾·伯努利以伯努利方程為基礎(chǔ),利用了差壓法測(cè)量了水流量。
后來(lái),意大利物理學(xué)家文丘里又用文丘里管測(cè)量了流量,并發(fā)表了研究成果。
1886年,美國(guó)人赫謝爾應(yīng)用文丘里管制成了測(cè)量水流量的的實(shí)用測(cè)量裝置。
20世紀(jì)初期到中期,原有的測(cè)量原理逐漸走向成熟,人們不再將思路局限在原有的測(cè)量方法上,而是開(kāi)始了新的探索。1910年時(shí),美國(guó)人開(kāi)始了槽式流量計(jì)的研究工作,這種流量計(jì)是用來(lái)測(cè)量明溝中水流量的。1922年,帕歇爾將水槽測(cè)量改革為帕歇爾水槽。
槽式流量計(jì)發(fā)展的同時(shí),美籍匈牙利人卡門(mén)正在研究渦街理論,1911年到1912年,他提出了卡門(mén)渦街新理論。
到了30年代,又出現(xiàn)了探討用聲波測(cè)量液體和氣體的流速的方法聲波測(cè)量流量的方法,但到第二次世界大戰(zhàn)為止未獲得很大進(jìn)展,直到1955才有了應(yīng)用聲循環(huán)法的馬克森流量計(jì)的問(wèn)世,用于測(cè)量航空燃料的流量。
1945年,科林用交變磁場(chǎng)成功的測(cè)量了血液流動(dòng)的情況。
20世紀(jì)的60年代以后,測(cè)量?jī)x表開(kāi)始向精密化、小型化等方向發(fā)展。例如,為了提高了差壓儀表的精確度,出現(xiàn)了力平衡差壓變送器和電容式差壓變送器;為了使電磁流量計(jì)的傳感小型化和改善信噪比,出現(xiàn)了用非均勻磁場(chǎng)和低頻勵(lì)磁方式的電磁流量計(jì),此外,具有寬測(cè)量范圍和無(wú)活動(dòng)檢測(cè)部件的實(shí)用卡門(mén)渦街流量計(jì),也在70年代問(wèn)世。
隨著集成電路技術(shù)的迅速發(fā)展,具有鎖相環(huán)路技術(shù)的超聲(波)流量計(jì)也得到了普遍應(yīng)用,微型計(jì)算機(jī)的廣泛應(yīng)用,進(jìn)一步提高了流量測(cè)量的能力,如激光多普勒流速計(jì)應(yīng)用微型計(jì)算機(jī)后,可處理較為復(fù)雜的信號(hào)。