當前位置:南京灼華電氣有限公司>>電機>> BAUMULLER電機GZ02-M8/2W-A NR:21118658
GROSCHOPP電機Nr;8169209, WK00867好貨
GROSCHOPP三相電機IGL 80-60 NV 8669712
出手PARKER油馬達電機112A-071-AM-0-R1-F
供貨周期 | 一個月以上 | 規格 | 9 |
---|---|---|---|
貨號 | 9 | 應用領域 | 化工,石油,能源,電氣,綜合 |
主要用途 | 9 |
BAUMULLER電機GZ02-M8/2W-A NR:21118658
BAUMULLER-0001 PSB-05 電源
BAUMULLER-0002 BUM60-30/60-31-B-000 控制器
BAUMULLER-0003 BUS6-VC-EC-0084-0003-1102-0000
BAUMULLER-0004 BUG623-56-54-B-005
BAUMULLER-0005 BUS624-45/67-54-M-005
BAUMULLER-0006 DSO100-L 19.2KW 31.5A
BAUMULLER-0007 交流伺服馬達DS-56-L
BAUMULLER-0008 GHTS46 50202125 10mA 60v
BAUMULLER-0009 BUG260-31-B-010 伺服電源
BAUMULLER-0010 GOM120N-52810750
BAUMULLER-0011 BUG2-60-31-B-010 電源
BAUMULLER-0012 BUG2-60-30-B-004 電源
BAUMULLER-0013 BFN3-1-100-001
BAUMULLER-0014 BHF3-1-130-001
BAUMULLER-0015 BFN3-1-250-001
BAUMULLER-0016 BM4145-ST0-00300-03
BAUMULLER-0017 BM4145-ST0-01300-03
BAUMULLER-0018 BM4422-SI1-21300-03
BAUMULLER-0019 BM4423-SI1-21300-03
BAUMULLER-0020 BM4424-SI1-21300-03
BAUMULLER-0021 BM4443-SI2-21300-03
BAUMULLER-0022 BM4444-SI2-01300-03
BAUMULLER-0023 BM4445-SI2-21300-03
BAUMULLER-0024 BM4462-SI2-01300-03
BAUMULLER-0025 DSM190 N/R NR.402018342
BAUMULLER-0026 BUS21-15/30-30-001
BAUMULLER-0027 ODE90-S2 馬達
BAUMULLER-0028 DC MOTOR GNA200LN-Y71P 189KW-1
BAUMULLER-0029 GHTS 10Ma 1000轉/min
BAUMULLER-0030 ZPU8G-100*B-380/50
BAUMULLER-0031 ZPU8G-60*B-380/50
BAUMULLER-0032 DAF 132 L-54A17-5 10600320
BAUMULLER-0033 3.9624D編碼器接口板
BAUMULLER-0034 BM4412-STO-01200-03
BAUMULLER-0035 DS56-L,93261949 轉速3000轉/分
BAUMULLER-0036 GSF71-S NR:352 07803
BAUMULLER-0037 BUS-VC-EC-0084
BAUMULLER-0038 DZ02-L8/2W-A
BAUMULLER-0039 GZ0-L6
BAUMULLER-0040 GHT612/46 1000轉/分 60V 10mA
BAUMULLER-0041 DSG56-S Nr:20816851 ArtNr:
BAUMULLER-0042 DSC45-L Nr:20826679 ArtNr:
BAUMULLER-0043 DSC45-M Nr:20813658 ArtNr:
BAUMULLER-0044 GNA160MN-01HT
BAUMULLER-0045 BKF12/200/520-6040 10000
BAUMULLER-0046 GZ02-L8/2WA NTNY230/400正負15%
BAUMULLER-0047 DSM115/6N-1-G
BAUMULLER-0048 GDM120N-528/0750 V=24VDC
BAUMULLER-0049 GNAG160SVA 48KW 3000轉/分
BAUMULLER-0050 BM4-PRO-01-00-00-001-007
BAUMULLER-0051 GDM100N-0924/0500 00391085
BAUMULLER-0052 PYPDS71M35 8.9KW 12.3A
BAUMULLER-0053 DS 45-S Nr.92220038
BAUMULLER-0054 DSOG100 S45 19KW 50/60HZ 39.8A
BAUMULLER-0055 BM1412-01-00-01,1.2KVA/0.4KW
BAUMULLER-0056 DSCG071K64U20-5
BAUMULLER-0057 GDM12Z-858/0400 00384421
BAUMULLER-0058 BUS21-22/45-31-020 DC310V
BAUMULLER-1010 RE20P-2DK3FXI
BAUMULLER-1011 DSM190N2 240/0630X7/R/V 60Nm
BAUMULLER-1012 GZ02-L8/2W-A
BAUMULLER-1013 GZ0-L6/2W-A
BAUMULLER-1014 GNAG160SVA 48KW 3000轉/分
BAUMULLER-1015 GZ02-M8/2WA
BAUMULLER-1016 BUS6-E-SM-0028-A009-0000
BAUMULLER-1017 GNAG 160KVR
BAUMULLER-1018 BM4412-S70-01200-03
BAUMULLER-1019 DSO 71-K
BAUMULLER-1020 DS 56-S sn.20718691
BAUMULLER-1021 D8 56-S sn.20512053
BAUMULLER-1022 BUM60-VC-AO-0001 S30207322
BAUMULLER-1023 BM4424-ST0-01200-03
BAUMULLER-1024 GHAC160SW
BAUMULLER-1025 GNA 225LN Nr 10103198
BAUMULLER-1026 GHTS42029228 10MA 20V 1000/MIN
BAUMULLER-1027 GDM250/3 3024/0560
BAUMULLER-1028 GHTS46 SN.505015135
BAUMULLER-1029 GDM120N-528/0750
BAUMULLER-1030 BUS20-80/135-32-1-033 301660
BAUMULLER-1031 BUM60-30/60-31-B-000 373465
BAUMULLER-1032 BM4424-AT1-01200-03
BAUMULLER-1033 DSD036S65U4054 SER.NR:40803454
BAUMULLER-1034 GHT 612/46 505014188 5mA
BAUMULLER-1035 GNAG160SN
BAUMULLER-1036 BUS20-80/135-31-033 301660
BAUMULLER-1037 BUS60-30/60-31-B-000 373405
BAUMULLER-1038 DS56-M Nr:20906704
BAUMULLER-1039 RE18P2DK3BXR Nr:Nr:10902752
BAUMULLER-1040 DAF160M54A10-5 Nr:10902752
BAUMULLER-1041 DA180M54A17-5 Nr:1092827
BAUMULLER-1042 BUM60 12/24
BAUMULLER-1043 電纜 00324783
BAUMULLER-1044 BUM60-A-SM-0110-B
BAUMULLER-1045 DSG45-S nr.942 08390 含制動
BAUMULLER-1046 DAFF 180M-23R20-5 10602982
BAUMULLER-1047 GOM120N-528 528/0750
BAUMULLER-1048 DS56M35
BAUMULLER-1049 DS71M35
BAUMULLER-1050 DAF160K54A17-5
伺服驅動器(servo drives)又稱為“伺服控制器"、“伺服放大器",是用來控制伺服電機的一種控制器,其作用類似于變頻器作用于普通交流馬達,屬于伺服系統的一部分,主要應用于高精度的定位系統。一般是通過位置、速度和力矩三種方式對伺服電機進行控制,實現高精度的傳動系統定位,目前是傳動技術的產品。
中文名 伺服驅動器 外文名 servo drives 別 名伺服控制器、伺服放大器 實 質 控制伺服電機的一種控制器
伺服驅動器是現代運動控制的重要組成部分,被廣泛應用于工業機器人及數控加工中心等自動化設備中。尤其是應用于控制交流永磁同步電機的伺服驅動器已經成為國內外研究熱點。當前交流伺服驅動器設計中普遍采用基于矢量控制的電流、速度、位置3閉環控制算法。該算法中速度閉環設計合理與否,對于整個伺服控制系統,特別是速度控制性能的發揮起到關鍵作用 [1] 。
在伺服驅動器速度閉環中,電機轉子實時速度測量精度對于改善速度環的轉速控制動靜態特性至關重要。為尋求測量精度與系統成本的平衡,一般采用增量式光電編碼器作為測速傳感器,與其對應的常用測速方法為M/T測速法。M/T測速法雖然具有一定的測量精度和較寬的測量范圍,但這種方法有其固有的缺陷,主要包括:1)測速周期內必須檢測到至少一個完整的碼盤脈沖,限制了可測轉速;2)用于測速的2個控制系統定時器開關難以嚴格保持同步,在速度變化較大的測量場合中法保證測速精度。因此應用該測速法的傳統速度環設計方案難以提高伺服驅動器速度跟隨與控制性能 [1] 。
工作原理編輯
目前主流的伺服驅動器均采用數字信號處理器(DSP)作為控制核心,
可以實現比較復雜的控制算法,實現數字化、網絡化和智能化。功率器件普遍采用以智能功率模塊(IPM)為核心設計的驅動電路,IPM內部集成了驅動電路,同時具有過電壓、過電流、過熱、欠壓等故障檢測保護電路,在主回路中還加入軟啟動電路,以減小啟動過程對驅動器的沖擊。功率驅動單元首先通過三相全橋整流電路對輸入的三相電或者市電進行整流,得到相應的直流電。經過整流好的三相電或市電,再通過三相正弦PWM電壓型逆變器變頻來驅動三相永磁式同步交流伺服電機。功率驅動單元的整個過程可以簡單的說就是AC-DC-AC的過程。整流單元(AC-DC)主要的拓撲電路是三相全橋不控整流電路。
隨著伺服系統的大規模應用,伺服驅動器使用、伺服驅動器調試、伺服驅動器維修都是伺服驅動器在當今比較重要的技術課題,越來越多工控技術服務商對伺服驅動器進行了技術深層次研究。
伺服驅動器是現代運動控制的重要組成部分,被廣泛應用于工業機器人及數控加工中心等自動化設備中。尤其是應用于控制交流永磁同步電機的伺服驅動器已經成為國內外研究熱點。當前交流伺服驅動器設計中普遍采用基于矢量控制的電流、速度、位置3閉環控制算法。該算法中速度閉環設計合理與否,對于整個伺服控制系統,特別是速度控制性能的發揮起到關鍵作用。
基本要求編輯
伺服進給系統的要求
1、調速范圍寬
2、定位精度高
3、有足夠的傳動剛性和高的速度穩定性
4、快速響應,超調
為了保證生產率和加工質量,除了要求有較高的定位精度外,還要求有良好的快速響應特性,即要求跟蹤指令信號的響應要快,因為數控系統在啟動、制動時,要求加、減加速度足夠大,縮短進給系統的過渡過程時間,減小輪廓過渡誤差。
5、低速大轉矩,過載能力強
一般來說,伺服驅動器具有數分鐘甚至半小時內1.5倍以上的過載能力,在短時間內可以過載4~6倍而不損壞。
6、可靠性高
要求數控機床的進給驅動系統可靠性高、工作穩定性好,具有較強的溫度、濕度、振動等環境適應能力和很強的抗干擾的能力。
對電機的要求
1、從速到最高速電機都能平穩運轉,轉矩波動要小,尤其在低速如0.1r/min或更低速時,仍有平穩的速度而爬行現象。
2、電機應具有大的較長時間的過載能力,以滿足低速大轉矩的要求。一般直流伺服電機要求在數分鐘內過載4~6倍而不損壞。
3、為了滿足快速響應的要求,電機應有較小的轉動慣量和大的堵轉轉矩,并具有盡可能小的時間常數和啟動電壓。
4、電機應能承受頻繁啟、制動和反轉。
測試平臺編輯
目前,伺服驅動器的測試平臺主要有以下幾種:采用伺服驅動器—電動機互饋對拖的測試平臺、采用可調模擬負載的測試平臺、采用有執行電機而沒有負載的測試平臺、采用執行電機拖動固有負載的測試平臺和采用在線測試方法的測試平臺 [2] 。
1采用伺服驅動器—電動機互饋對拖的測試平臺
這種測試系統由四部分組成,分別是三相PWM整流器、被測伺服驅動器—電動機系統、負載伺服驅動器—電動機系統及上位機,其中兩臺電動機通過聯軸器互相連接。被測電動機工作于電動狀態,負載電動機工作于發電狀態。被測伺服驅動器—電動機系統工作于速度閉環狀態,用來控制整個測試平臺的轉速,負載伺服驅動器—電動機系統工作于轉矩閉環狀態,通過控制負載電動機的電流來改變負載電動機的轉矩大小,模擬被測電機的負載變化,這樣互饋對拖測試平臺可以實現速度和轉矩的靈活調節,完成各種試驗功能測試。上位機用于監控整個系統的運行,根據試驗要求向兩臺伺服驅動器發出控制指令,同時接收它們的運行數據,并對數據進行保存、分析與顯示。 [2]
對于這種測試系統,采用高性能的矢量控制方式對被測電動機和負載設備分別進行速度和轉矩控制,即可模擬各種負載情況下伺服驅動器的動、靜態性能,完成對伺服驅動器的全面而準確的測試。但由于使用了兩套伺服驅動器—電動機系統,所以這種測試系統體積龐大,不能滿足便攜式的要求,而且系統的測量和控制電路也比較復雜、成本也很高。 [2]
2采用可調模擬負載的測試平臺
這種測試系統由三部分組成,分別是被測伺服驅動器—電動機系統、可調模擬負載及上位機。可調模擬負載如磁粉制動器、電力測功機等,它和被測電動機同軸相連。上位機和數據采集卡通過控制可調模擬負載來控制負載轉矩,同時采集伺服系統的運行數據,并對數據進行保存、分析與顯示。對于這種測試系統,通過對可調模擬負載進行控制,也可模擬各種負載情況下伺服驅動器的動、靜態性能,完成對伺服驅動器的全面而準確的測試。但這種測試系統體積仍然比較大,不能滿足便攜式的要求,而且系統的測量和控制電路也比較復雜、成本也很高。 [2]
3采用有執行電機而沒有負載的測試平臺
這種測試系統由兩部分組成,分別是被測伺服驅動器—電動機系統和上位機。上位機將速度指令信號發送給伺服驅動器,伺服驅動器按照指令開始運行。在運行過程中,上位機和數據采集電路采集伺服系統的運行數據,并對數據進行保存、分析與顯示。由于這種測試系統中電機不帶負載,所以與前面兩種測試系統相比,該系統體積相對減小,而且系統的測量和控制電路也比較簡單,但是這也使得該系統不能模擬伺服驅動器的實際運行情況。通常情況下,此類測試系統僅用于被測系統在空載情況下的轉速和角位移的測試,而不能對伺服驅動器進行全面而準確的測試。 [2]
4采用執行電機拖動固有負載的測試平臺
這種測試系統由三部分組成,分別是被測伺服驅動器—電動機系統、系統固有負載及上位機。上位機將速度指令信號發送給伺服驅動器,伺服系統按照指令開始運行。在運行過程中,上位機和數據采集電路采集伺服系統的運行數據,并對數據進行保存、分析與顯示。 [2]
對于這種測試系統,負載采用被測系統的固有負載,因此測試過程貼近于伺服驅動器的實際工作情況,測試結果比較準確。但由于有的被測系統的固有負載不方便從裝備上移走,因此測試過程只能在裝備上進行,不是很方便。 [2]
5采用在線測試方法的測試平臺
這種測試系統只有數據采集系統和數據處理單元。數字采集系統將伺服驅動器在裝備中的實時運行狀態信號進行采集和調理,然后送給數據處理單元供其進行處理和分析,最終由數據處理單元做出測試結論。由于采用在線測試方法,因此這種測試系統結構比較簡單,而且不用將伺服驅動器從裝備中分離出來,使測試更加便利。此類測試系統*根據伺服驅動器在實際運行中進行測試,因此測試結論更加貼近實際情況。但是由于許多伺服驅動器在制造和裝配方面的特點,此類測試系統中的各種傳感器及信號測量元件的安裝位置很難選擇。而且裝備中的其它部分如果出現故障,也會給伺服驅動器的工作狀態造成不良影響,最終影響其測試結果。 [2]
有關參數編輯
位置比例增益
1、設定位置環調節器的比例增益;
2、設置值越大,增益越高,剛度越大,相同頻率指令脈沖條件下,位置滯后量越小。但數值太大可能會引起振蕩或超調;
3、參數數值由具體的伺服系統型號和負載情況確定。
位置前饋增益
1、設定位置環的前饋增益;
2、設定值越大時,表示在任何頻率的指令脈沖下,位置滯后量越小;
3、位置環的前饋增益大,控制系統的高速響應特性提高,但會使系統的位置不穩定,容易產生振蕩;
4、不需要很高的響應特性時,本參數通常設為0表示范圍:0~100%。
速度比例增益
1、設定速度調節器的比例增益;
2、設置值越大,增益越高,剛度越大。參數數值根據具體的伺服驅動系統型號和負載值情況確定。一般情況下,負載慣量越大,設定值越大;
3、在系統不產生振蕩的條件下,盡量設定較大的值。
速度積分時間常數
1、設定速度調節器的積分時間常數;
2、設置值越小,積分速度越快。參數數值根據具體的伺服驅動系統型號和負載情況確定。一般情況下,負載慣量越大,設定值越大;
3、在系統不產生振蕩的條件下,盡量設定較小的值。
速度反饋濾波因子
1、設定速度反饋低通濾波器特性;
2、數值越大,截止頻率越低,電機產生的噪音越小。如果負載慣量很大,可以適當減小設定值。數值太大,造成響應變慢,可能會引起振蕩;
3、數值越小,截止頻率越高,速度反饋響應越快。如果需要較高的速度響應,可以適當減小設定值。
*輸出轉矩設置
1、設置伺服電機的內部轉矩限制值;
2、設置值是額定轉矩的百分比;
3、任何時候,這個限制都有效定位完成范圍;
4、設定位置控制方式下定位完成脈沖范圍;
5、本參數提供了位置控制方式下驅動器判斷是否完成定位的依據,當位置偏差計數器內的剩余脈沖數小于或等于本參數設定值時,驅動器認為定位已完成,到位開關信號為 ON,否則為OFF;
6、在位置控制方式時,輸出位置定位完成信號,加減速時間常數;
7、設置值是表示電機從0~2000r/min的加速時間或從2000~0r/min的減速時間;
8、加減速特性是線性的到達速度范圍;
9、設置到達速度;
10、在非位置控制方式下,如果電機速度超過本設定值,則速度到達開關信號為ON,否則為OFF;
11、在位置控制方式下,不用此參數;
12、與旋轉方向關。
應用領域編輯
伺服驅動器廣泛應用于注塑機領域、紡織機械、包裝機械、數控機床領域等。
控制器特點編輯
調速比1:5000
轉數比0.3:1500
有位置控制
有零速鎖定
過載能力200[%]―300[%]
起動力矩大
轉速不受負載影響
三閉環控制
相關區別編輯
1、伺服控制器通過自動化接口可很方便地進行操作模塊和現場總線模塊的轉換,同時使用不同的現場總線模塊實現不同的控制模式(RS232、RS485、光纖、InterBus、ProfiBus),而通用變頻器的控制方式比較單一。
2、伺服控制器直接連接旋轉變壓器或編碼器,構成速度、位移控制閉環。而通用變頻器只能組成開環控制系統。
3伺服控制器的各項控制指標(如穩態精度和動態性能等)優于通用變頻器。
BAUMULLER-1051 BM4445-Sl2-21300-0308-1
BAUMULLER-1052 BM4424-SI1-21300-0308-1
BAUMULLER-1053 BM4422-Sl1-21300-0308-1
BAUMULLER-1054 BM4423-Sl1-21300-0308-1
BAUMULLER-1055 BM4462-Sl2-01343-030
BAUMULLER-1056 BM1413-01-00-01
BAUMULLER-1057 DA 180 L 54A 10-5
BAUMULLER-1058 DS 56-M 20913275
BAUMULLER-1059 DS 71-M Nr.20914611
BAUMULLER-1060 DS71S35
BAUMULLER-1061 DS100-L51
BAUMULLER-1062 DS71-K35
BAUMULLER-1063 DS 56-L Nr 20407506
BAUMULLER-1064 M-DRIVE 4 MASTER 31M DUAL-SERC
BAUMULLER-1065 DSDG028M44C605 0.47KW
BAUMULLER-1066 BM4424-ST0-01200-03
BAUMULLER-1067 DSO100-L 20901615 artnr.394896
BAUMULLER-1068 BUM62T-100/130-54-D-03Q
BAUMULLER-1069 BM4-O-PRO-01-00-00 001-005
BAUMULLER-1070 BUM25-30/60-30-001
BAUMULLER-1071 HPN:2414076
BAUMULLER-1072 HPN:2657270
BAUMULLER-1073 DSG 71-K Nr.00210615/F
BAUMULLER-1074 DS 56-M 2KW NO:20907786
BAUMULLER-1075 RE/8P-2DK 3B XR 3000/3600R/MIN
BAUMULLER-1076 GSF-45-S Nr.902 12937
BAUMULLER-1077 DST 200M 54W 15-5
BAUMULLER-1078 DST 200L 54W 60-5
BAUMULLER-1079 DST2-200KS54W-030-5
BAUMULLER-1080 BUG20-120-31-B-010
BAUMULLER-1081 BUS20-80/135-31-021
BAUMULLER-1082 DSF160L54W25-5
BAUMULLER-1083 GNA 160MN cooling motor:00F09
BAUMULLER-1084 DSG 56 L45 UL NO.21002086/H
BAUMULLER-1085 DSCG 056 K64U38-5 UL 21001497
BAUMULLER-1086 DSCG 071 S64U38-5 UL 21001572
BAUMULLER-1087 GNAG 160 SVA NR:92102518
BAUMULLER-1088 P/N: GDM 12Z-858/0400
BAUMULLER-1089 3.0102.01.A.01
BAUMULLER-1090 BUM61-VC-OE-1036 380185
BAUMULLER-1091 BUM61-30/45-54-B-M-12
BAUMULLER-1092 BUM63S-150/195-54-E-M-005
BAUMULLER-1093 BUS6-VC-CE-0036 373589
BAUMULLER-1094 DST315M-54W30-5 10702404
BAUMULLER-1095 OST315M-54W30-5 350V
BAUMULLER-1096 BUM61-VC-OE-1036// 374244
BAUMULLER-1097 BUM63TS-210/235-54-E-M-005
BAUMULLER-1098 DST315 X54W20-5
BAUMULLER-1099 DAF132K-54A23-6
BAUMULLER-1100 DS 100-S 3.7KW 371383/6350443
BAUMULLER-1101 DAF100B54A17-6 20616521
BAUMULLER-1102 AC-MOTER DA180L54A10-5
BAUMULLER-1103 BM4463-SL2-01343-030
BAUMULLER-1104 BM4422-SL1-21300-030
BAUMULLER-1105 BM4420-SL1-21300-030
BAUMULLER-1106 BFO-3-550-000
BAUMULLER-1107 BL3-130 130A
BAUMULLER-1108 BFN3-1-320-001
BAUMULLER-1109 BK3-0365/0450-001
BAUMULLER-1110 DSO100-S Nn 98213798/F
BAUMULLER-1111 F675746 006191133300
BAUMULLER-1112 BUM 60-12/24-54-B-001-VC-A0-
BAUMULLER-1113 114292 max.450v/1.2A~
BAUMULLER-1114 GZOZ-M8/ZW 95229877
BAUMULLER-1115 BM4432-SI2-21300-0308-1
BAUMULLER-1116 DSG45M35
BAUMULLER-1117 DSG56-M
BAUMULLER-1118 DS71-M
BAUMULLER-1119 DS56-M
BAUMULLER-1120 BM4432-SI1-01200-03
BAUMULLER-1121 BM4434-SI1-0220-03
BAUMULLER-1122 BUM60-40/60-54-B-012
BAUMULLER-1123 GDM250/3-3024-0560
BAUMULLER-1124 DS0100-L 19.2KW 2000MIN/-1
BAUMULLER-1125 BKD6-50-460-604010000
BAUMULLER-1126 BM4432-SI2-21300-0308-1
BAUMULLER-1127 BM4422-SI1-21300-0308-1
BAUMULLER-1128 BM1412-01-00-01
BAUMULLER-1129 BM4432-SI2-01300-0308-1
BAUMULLER-1130 BM4420-SI1-21300-0308-1
BAUMULLER-1131 BM4433-SI2-21300-0308-1
BAUMULLER-1132 BM4135-STO-00300-03
BAUMULLER-1133 148VK0281072
BAUMULLER-1134 RE18P2DK3BXR
伺服驅動器(servo drives)又稱為“伺服控制器"、“伺服放大器",是用來控制伺服電機的一種控制器,其作用類似于變頻器作用于普通交流馬達,屬于伺服系統的一部分,主要應用于高精度的定位系統。一般是通過位置、速度和力矩三種方式對伺服電機進行控制,實現高精度的傳動系統定位,目前是傳動技術的產品。
中文名 伺服驅動器 外文名 servo drives 別 名伺服控制器、伺服放大器 實 質 控制伺服電機的一種控制器
伺服驅動器是現代運動控制的重要組成部分,被廣泛應用于工業機器人及數控加工中心等自動化設備中。尤其是應用于控制交流永磁同步電機的伺服驅動器已經成為國內外研究熱點。當前交流伺服驅動器設計中普遍采用基于矢量控制的電流、速度、位置3閉環控制算法。該算法中速度閉環設計合理與否,對于整個伺服控制系統,特別是速度控制性能的發揮起到關鍵作用 [1] 。
在伺服驅動器速度閉環中,電機轉子實時速度測量精度對于改善速度環的轉速控制動靜態特性至關重要。為尋求測量精度與系統成本的平衡,一般采用增量式光電編碼器作為測速傳感器,與其對應的常用測速方法為M/T測速法。M/T測速法雖然具有一定的測量精度和較寬的測量范圍,但這種方法有其固有的缺陷,主要包括:1)測速周期內必須檢測到至少一個完整的碼盤脈沖,限制了可測轉速;2)用于測速的2個控制系統定時器開關難以嚴格保持同步,在速度變化較大的測量場合中法保證測速精度。因此應用該測速法的傳統速度環設計方案難以提高伺服驅動器速度跟隨與控制性能 [1] 。
工作原理編輯
目前主流的伺服驅動器均采用數字信號處理器(DSP)作為控制核心,
可以實現比較復雜的控制算法,實現數字化、網絡化和智能化。功率器件普遍采用以智能功率模塊(IPM)為核心設計的驅動電路,IPM內部集成了驅動電路,同時具有過電壓、過電流、過熱、欠壓等故障檢測保護電路,在主回路中還加入軟啟動電路,以減小啟動過程對驅動器的沖擊。功率驅動單元首先通過三相全橋整流電路對輸入的三相電或者市電進行整流,得到相應的直流電。經過整流好的三相電或市電,再通過三相正弦PWM電壓型逆變器變頻來驅動三相永磁式同步交流伺服電機。功率驅動單元的整個過程可以簡單的說就是AC-DC-AC的過程。整流單元(AC-DC)主要的拓撲電路是三相全橋不控整流電路。
隨著伺服系統的大規模應用,伺服驅動器使用、伺服驅動器調試、伺服驅動器維修都是伺服驅動器在當今比較重要的技術課題,越來越多工控技術服務商對伺服驅動器進行了技術深層次研究。
伺服驅動器是現代運動控制的重要組成部分,被廣泛應用于工業機器人及數控加工中心等自動化設備中。尤其是應用于控制交流永磁同步電機的伺服驅動器已經成為國內外研究熱點。當前交流伺服驅動器設計中普遍采用基于矢量控制的電流、速度、位置3閉環控制算法。該算法中速度閉環設計合理與否,對于整個伺服控制系統,特別是速度控制性能的發揮起到關鍵作用。
基本要求編輯
伺服進給系統的要求
1、調速范圍寬
2、定位精度高
3、有足夠的傳動剛性和高的速度穩定性
4、快速響應,超調
為了保證生產率和加工質量,除了要求有較高的定位精度外,還要求有良好的快速響應特性,即要求跟蹤指令信號的響應要快,因為數控系統在啟動、制動時,要求加、減加速度足夠大,縮短進給系統的過渡過程時間,減小輪廓過渡誤差。
5、低速大轉矩,過載能力強
一般來說,伺服驅動器具有數分鐘甚至半小時內1.5倍以上的過載能力,在短時間內可以過載4~6倍而不損壞。
6、可靠性高
要求數控機床的進給驅動系統可靠性高、工作穩定性好,具有較強的溫度、濕度、振動等環境適應能力和很強的抗干擾的能力。
對電機的要求
1、從速到最高速電機都能平穩運轉,轉矩波動要小,尤其在低速如0.1r/min或更低速時,仍有平穩的速度而爬行現象。
2、電機應具有大的較長時間的過載能力,以滿足低速大轉矩的要求。一般直流伺服電機要求在數分鐘內過載4~6倍而不損壞。
3、為了滿足快速響應的要求,電機應有較小的轉動慣量和大的堵轉轉矩,并具有盡可能小的時間常數和啟動電壓。
4、電機應能承受頻繁啟、制動和反轉。
測試平臺編輯
目前,伺服驅動器的測試平臺主要有以下幾種:采用伺服驅動器—電動機互饋對拖的測試平臺、采用可調模擬負載的測試平臺、采用有執行電機而沒有負載的測試平臺、采用執行電機拖動固有負載的測試平臺和采用在線測試方法的測試平臺 [2] 。
1采用伺服驅動器—電動機互饋對拖的測試平臺
這種測試系統由四部分組成,分別是三相PWM整流器、被測伺服驅動器—電動機系統、負載伺服驅動器—電動機系統及上位機,其中兩臺電動機通過聯軸器互相連接。被測電動機工作于電動狀態,負載電動機工作于發電狀態。被測伺服驅動器—電動機系統工作于速度閉環狀態,用來控制整個測試平臺的轉速,負載伺服驅動器—電動機系統工作于轉矩閉環狀態,通過控制負載電動機的電流來改變負載電動機的轉矩大小,模擬被測電機的負載變化,這樣互饋對拖測試平臺可以實現速度和轉矩的靈活調節,完成各種試驗功能測試。上位機用于監控整個系統的運行,根據試驗要求向兩臺伺服驅動器發出控制指令,同時接收它們的運行數據,并對數據進行保存、分析與顯示。 [2]
對于這種測試系統,采用高性能的矢量控制方式對被測電動機和負載設備分別進行速度和轉矩控制,即可模擬各種負載情況下伺服驅動器的動、靜態性能,完成對伺服驅動器的全面而準確的測試。但由于使用了兩套伺服驅動器—電動機系統,所以這種測試系統體積龐大,不能滿足便攜式的要求,而且系統的測量和控制電路也比較復雜、成本也很高。 [2]
2采用可調模擬負載的測試平臺
這種測試系統由三部分組成,分別是被測伺服驅動器—電動機系統、可調模擬負載及上位機。可調模擬負載如磁粉制動器、電力測功機等,它和被測電動機同軸相連。上位機和數據采集卡通過控制可調模擬負載來控制負載轉矩,同時采集伺服系統的運行數據,并對數據進行保存、分析與顯示。對于這種測試系統,通過對可調模擬負載進行控制,也可模擬各種負載情況下伺服驅動器的動、靜態性能,完成對伺服驅動器的全面而準確的測試。但這種測試系統體積仍然比較大,不能滿足便攜式的要求,而且系統的測量和控制電路也比較復雜、成本也很高。 [2]
3采用有執行電機而沒有負載的測試平臺
這種測試系統由兩部分組成,分別是被測伺服驅動器—電動機系統和上位機。上位機將速度指令信號發送給伺服驅動器,伺服驅動器按照指令開始運行。在運行過程中,上位機和數據采集電路采集伺服系統的運行數據,并對數據進行保存、分析與顯示。由于這種測試系統中電機不帶負載,所以與前面兩種測試系統相比,該系統體積相對減小,而且系統的測量和控制電路也比較簡單,但是這也使得該系統不能模擬伺服驅動器的實際運行情況。通常情況下,此類測試系統僅用于被測系統在空載情況下的轉速和角位移的測試,而不能對伺服驅動器進行全面而準確的測試。 [2]
4采用執行電機拖動固有負載的測試平臺
這種測試系統由三部分組成,分別是被測伺服驅動器—電動機系統、系統固有負載及上位機。上位機將速度指令信號發送給伺服驅動器,伺服系統按照指令開始運行。在運行過程中,上位機和數據采集電路采集伺服系統的運行數據,并對數據進行保存、分析與顯示。 [2]
對于這種測試系統,負載采用被測系統的固有負載,因此測試過程貼近于伺服驅動器的實際工作情況,測試結果比較準確。但由于有的被測系統的固有負載不方便從裝備上移走,因此測試過程只能在裝備上進行,不是很方便。 [2]
5采用在線測試方法的測試平臺
這種測試系統只有數據采集系統和數據處理單元。數字采集系統將伺服驅動器在裝備中的實時運行狀態信號進行采集和調理,然后送給數據處理單元供其進行處理和分析,最終由數據處理單元做出測試結論。由于采用在線測試方法,因此這種測試系統結構比較簡單,而且不用將伺服驅動器從裝備中分離出來,使測試更加便利。此類測試系統*根據伺服驅動器在實際運行中進行測試,因此測試結論更加貼近實際情況。但是由于許多伺服驅動器在制造和裝配方面的特點,此類測試系統中的各種傳感器及信號測量元件的安裝位置很難選擇。而且裝備中的其它部分如果出現故障,也會給伺服驅動器的工作狀態造成不良影響,最終影響其測試結果。 [2]
有關參數編輯
位置比例增益
1、設定位置環調節器的比例增益;
2、設置值越大,增益越高,剛度越大,相同頻率指令脈沖條件下,位置滯后量越小。但數值太大可能會引起振蕩或超調;
3、參數數值由具體的伺服系統型號和負載情況確定。
位置前饋增益
1、設定位置環的前饋增益;
2、設定值越大時,表示在任何頻率的指令脈沖下,位置滯后量越小;
3、位置環的前饋增益大,控制系統的高速響應特性提高,但會使系統的位置不穩定,容易產生振蕩;
4、不需要很高的響應特性時,本參數通常設為0表示范圍:0~100%。
速度比例增益
1、設定速度調節器的比例增益;
2、設置值越大,增益越高,剛度越大。參數數值根據具體的伺服驅動系統型號和負載值情況確定。一般情況下,負載慣量越大,設定值越大;
3、在系統不產生振蕩的條件下,盡量設定較大的值。
速度積分時間常數
1、設定速度調節器的積分時間常數;
2、設置值越小,積分速度越快。參數數值根據具體的伺服驅動系統型號和負載情況確定。一般情況下,負載慣量越大,設定值越大;
3、在系統不產生振蕩的條件下,盡量設定較小的值。
速度反饋濾波因子
1、設定速度反饋低通濾波器特性;
2、數值越大,截止頻率越低,電機產生的噪音越小。如果負載慣量很大,可以適當減小設定值。數值太大,造成響應變慢,可能會引起振蕩;
3、數值越小,截止頻率越高,速度反饋響應越快。如果需要較高的速度響應,可以適當減小設定值。
*輸出轉矩設置
1、設置伺服電機的內部轉矩限制值;
2、設置值是額定轉矩的百分比;
3、任何時候,這個限制都有效定位完成范圍;
4、設定位置控制方式下定位完成脈沖范圍;
5、本參數提供了位置控制方式下驅動器判斷是否完成定位的依據,當位置偏差計數器內的剩余脈沖數小于或等于本參數設定值時,驅動器認為定位已完成,到位開關信號為 ON,否則為OFF;
6、在位置控制方式時,輸出位置定位完成信號,加減速時間常數;
7、設置值是表示電機從0~2000r/min的加速時間或從2000~0r/min的減速時間;
8、加減速特性是線性的到達速度范圍;
9、設置到達速度;
10、在非位置控制方式下,如果電機速度超過本設定值,則速度到達開關信號為ON,否則為OFF;
11、在位置控制方式下,不用此參數;
12、與旋轉方向關。
應用領域編輯
伺服驅動器廣泛應用于注塑機領域、紡織機械、包裝機械、數控機床領域等。
控制器特點編輯
調速比1:5000
轉數比0.3:1500
有位置控制
有零速鎖定
過載能力200[%]―300[%]
起動力矩大
轉速不受負載影響
三閉環控制
相關區別編輯
1、伺服控制器通過自動化接口可很方便地進行操作模塊和現場總線模塊的轉換,同時使用不同的現場總線模塊實現不同的控制模式(RS232、RS485、光纖、InterBus、ProfiBus),而通用變頻器的控制方式比較單一。
2、伺服控制器直接連接旋轉變壓器或編碼器,構成速度、位移控制閉環。而通用變頻器只能組成開環控制系統。
3伺服控制器的各項控制指標(如穩態精度和動態性能等)優于通用變頻器。
BAUMULLER-1135 RE20P-2DK
BAUMULLER-1136 DS71-S
BAUMULLER-1137 DS71-M35 NR:213384
BAUMULLER-1138 DS56-M35
BAUMULLER-1139 DS71-M
BAUMULLER-1140 BM4423-STO-01200-03
BAUMULLER-1141 RXHG-1000W-65R-JEAGTOP
BAUMULLER-1142 BUS3 10-31 56 M2
BAUMULLER-1143 BUS3 10-31 56 S3
BAUMULLER-1144 BUS3 15/30-31-010
BAUMULLER-1145 BUS3-10/20-31-010
BAUMULLER-1146 BUG3-35-31-B-010
BAUMULLER-1147 BUS21-15/30-31-020
BAUMULLER-1148 BUS20-60/90-31-021
BAUMULLER-1149 BUG2-60-31-B-010
BAUMULLER-1150 BUS20 80-31 100 M2
BAUMULLER-1151 BUS 20 60-31 100 K3
BAUMULLER-1152 BUS 21 15-31 56 S3
BAUMULLER-1153 BUS3 15-31 71 K3
BAUMULLER-1154 BM4420-SI1-21300-0308-1
BAUMULLER-1155 BM4433-SI2-21300-030
BAUMULLER-1156 BM4135 (BMAXX;35KW;55A)
BAUMULLER-1157 BM4-ECT-01
BAUMULLER-1158 BM4-DIO-01
BAUMULLER-1159 BM4-Z-PS1-01
BAUMULLER-1160 BM4-F-ENC-02
BAUMULLER-1161 3-1-600-001 AC480Y/227V
BAUMULLER-1162 BM4463-SI0-SI0-00300-03
BAUMULLER-1163 BM4463-SI2-21343-0308-1
BAUMULLER-1164 BFN3-1-56-001
BAUMULLER-1165 BFN3-1-130-001
BAUMULLER-1166 BK3-0115/0140-002
BAUMULLER-1167 BFN3-1-250-001
BAUMULLER-1168 BK3-0275/0340-001
BAUMULLER-1169 BM4444-SI2-01300-030
BAUMULLER-1170 BM4443-SI2-21300-030
BAUMULLER-1171 BM1412-01-00-01
BAUMULLER-1172 BM4-Z-PSI-01
BAUMULLER-1173 GNAG 132 MV Nr.99103747
BAUMULLER-1174 SBM 10.2
BAUMULLER-1175 DIMG132SM305-BR24V
BAUMULLER-1176 S/N.310013977
BAUMULLER-1177 s/n.310013679
BAUMULLER-1178 s/n.310014726
BAUMULLER-1179 s/n.S310022753
BAUMULLER-1180 s/n.S308066229
BAUMULLER-1181 s/n.S308059524
BAUMULLER-1182 s/n.310011677
BAUMULLER-1183 S/N.S310022742
BAUMULLER-1184 GNAG180MV-440V-177A-71kW
BAUMULLER-1185 GNEG123KV-440V-23A-8,5kW
BAUMULLER-1186 GNAG132MV;Ua=460V,I=50Ampe,
BAUMULLER-1187 DAF160M54A10-5
BAUMULLER-1188 DA160K54A17-5
BAUMULLER-1189 DA225K54A17-5
BAUMULLER-1190 DA180L54A10-5
伺服驅動器(servo drives)又稱為“伺服控制器"、“伺服放大器",是用來控制伺服電機的一種控制器,其作用類似于變頻器作用于普通交流馬達,屬于伺服系統的一部分,主要應用于高精度的定位系統。一般是通過位置、速度和力矩三種方式對伺服電機進行控制,實現高精度的傳動系統定位,目前是傳動技術的產品。
中文名 伺服驅動器 外文名 servo drives 別 名伺服控制器、伺服放大器 實 質 控制伺服電機的一種控制器
伺服驅動器是現代運動控制的重要組成部分,被廣泛應用于工業機器人及數控加工中心等自動化設備中。尤其是應用于控制交流永磁同步電機的伺服驅動器已經成為國內外研究熱點。當前交流伺服驅動器設計中普遍采用基于矢量控制的電流、速度、位置3閉環控制算法。該算法中速度閉環設計合理與否,對于整個伺服控制系統,特別是速度控制性能的發揮起到關鍵作用 [1] 。
在伺服驅動器速度閉環中,電機轉子實時速度測量精度對于改善速度環的轉速控制動靜態特性至關重要。為尋求測量精度與系統成本的平衡,一般采用增量式光電編碼器作為測速傳感器,與其對應的常用測速方法為M/T測速法。M/T測速法雖然具有一定的測量精度和較寬的測量范圍,但這種方法有其固有的缺陷,主要包括:1)測速周期內必須檢測到至少一個完整的碼盤脈沖,限制了可測轉速;2)用于測速的2個控制系統定時器開關難以嚴格保持同步,在速度變化較大的測量場合中法保證測速精度。因此應用該測速法的傳統速度環設計方案難以提高伺服驅動器速度跟隨與控制性能 [1] 。
工作原理編輯
目前主流的伺服驅動器均采用數字信號處理器(DSP)作為控制核心,
可以實現比較復雜的控制算法,實現數字化、網絡化和智能化。功率器件普遍采用以智能功率模塊(IPM)為核心設計的驅動電路,IPM內部集成了驅動電路,同時具有過電壓、過電流、過熱、欠壓等故障檢測保護電路,在主回路中還加入軟啟動電路,以減小啟動過程對驅動器的沖擊。功率驅動單元首先通過三相全橋整流電路對輸入的三相電或者市電進行整流,得到相應的直流電。經過整流好的三相電或市電,再通過三相正弦PWM電壓型逆變器變頻來驅動三相永磁式同步交流伺服電機。功率驅動單元的整個過程可以簡單的說就是AC-DC-AC的過程。整流單元(AC-DC)主要的拓撲電路是三相全橋不控整流電路。
隨著伺服系統的大規模應用,伺服驅動器使用、伺服驅動器調試、伺服驅動器維修都是伺服驅動器在當今比較重要的技術課題,越來越多工控技術服務商對伺服驅動器進行了技術深層次研究。
伺服驅動器是現代運動控制的重要組成部分,被廣泛應用于工業機器人及數控加工中心等自動化設備中。尤其是應用于控制交流永磁同步電機的伺服驅動器已經成為國內外研究熱點。當前交流伺服驅動器設計中普遍采用基于矢量控制的電流、速度、位置3閉環控制算法。該算法中速度閉環設計合理與否,對于整個伺服控制系統,特別是速度控制性能的發揮起到關鍵作用。
基本要求編輯
伺服進給系統的要求
1、調速范圍寬
2、定位精度高
3、有足夠的傳動剛性和高的速度穩定性
4、快速響應,超調
為了保證生產率和加工質量,除了要求有較高的定位精度外,還要求有良好的快速響應特性,即要求跟蹤指令信號的響應要快,因為數控系統在啟動、制動時,要求加、減加速度足夠大,縮短進給系統的過渡過程時間,減小輪廓過渡誤差。
5、低速大轉矩,過載能力強
一般來說,伺服驅動器具有數分鐘甚至半小時內1.5倍以上的過載能力,在短時間內可以過載4~6倍而不損壞。
6、可靠性高
要求數控機床的進給驅動系統可靠性高、工作穩定性好,具有較強的溫度、濕度、振動等環境適應能力和很強的抗干擾的能力。
對電機的要求
1、從速到最高速電機都能平穩運轉,轉矩波動要小,尤其在低速如0.1r/min或更低速時,仍有平穩的速度而爬行現象。
2、電機應具有大的較長時間的過載能力,以滿足低速大轉矩的要求。一般直流伺服電機要求在數分鐘內過載4~6倍而不損壞。
3、為了滿足快速響應的要求,電機應有較小的轉動慣量和大的堵轉轉矩,并具有盡可能小的時間常數和啟動電壓。
4、電機應能承受頻繁啟、制動和反轉。
測試平臺編輯
目前,伺服驅動器的測試平臺主要有以下幾種:采用伺服驅動器—電動機互饋對拖的測試平臺、采用可調模擬負載的測試平臺、采用有執行電機而沒有負載的測試平臺、采用執行電機拖動固有負載的測試平臺和采用在線測試方法的測試平臺 [2] 。
1采用伺服驅動器—電動機互饋對拖的測試平臺
這種測試系統由四部分組成,分別是三相PWM整流器、被測伺服驅動器—電動機系統、負載伺服驅動器—電動機系統及上位機,其中兩臺電動機通過聯軸器互相連接。被測電動機工作于電動狀態,負載電動機工作于發電狀態。被測伺服驅動器—電動機系統工作于速度閉環狀態,用來控制整個測試平臺的轉速,負載伺服驅動器—電動機系統工作于轉矩閉環狀態,通過控制負載電動機的電流來改變負載電動機的轉矩大小,模擬被測電機的負載變化,這樣互饋對拖測試平臺可以實現速度和轉矩的靈活調節,完成各種試驗功能測試。上位機用于監控整個系統的運行,根據試驗要求向兩臺伺服驅動器發出控制指令,同時接收它們的運行數據,并對數據進行保存、分析與顯示。 [2]
對于這種測試系統,采用高性能的矢量控制方式對被測電動機和負載設備分別進行速度和轉矩控制,即可模擬各種負載情況下伺服驅動器的動、靜態性能,完成對伺服驅動器的全面而準確的測試。但由于使用了兩套伺服驅動器—電動機系統,所以這種測試系統體積龐大,不能滿足便攜式的要求,而且系統的測量和控制電路也比較復雜、成本也很高。 [2]
2采用可調模擬負載的測試平臺
這種測試系統由三部分組成,分別是被測伺服驅動器—電動機系統、可調模擬負載及上位機。可調模擬負載如磁粉制動器、電力測功機等,它和被測電動機同軸相連。上位機和數據采集卡通過控制可調模擬負載來控制負載轉矩,同時采集伺服系統的運行數據,并對數據進行保存、分析與顯示。對于這種測試系統,通過對可調模擬負載進行控制,也可模擬各種負載情況下伺服驅動器的動、靜態性能,完成對伺服驅動器的全面而準確的測試。但這種測試系統體積仍然比較大,不能滿足便攜式的要求,而且系統的測量和控制電路也比較復雜、成本也很高。 [2]
3采用有執行電機而沒有負載的測試平臺
這種測試系統由兩部分組成,分別是被測伺服驅動器—電動機系統和上位機。上位機將速度指令信號發送給伺服驅動器,伺服驅動器按照指令開始運行。在運行過程中,上位機和數據采集電路采集伺服系統的運行數據,并對數據進行保存、分析與顯示。由于這種測試系統中電機不帶負載,所以與前面兩種測試系統相比,該系統體積相對減小,而且系統的測量和控制電路也比較簡單,但是這也使得該系統不能模擬伺服驅動器的實際運行情況。通常情況下,此類測試系統僅用于被測系統在空載情況下的轉速和角位移的測試,而不能對伺服驅動器進行全面而準確的測試。 [2]
4采用執行電機拖動固有負載的測試平臺
這種測試系統由三部分組成,分別是被測伺服驅動器—電動機系統、系統固有負載及上位機。上位機將速度指令信號發送給伺服驅動器,伺服系統按照指令開始運行。在運行過程中,上位機和數據采集電路采集伺服系統的運行數據,并對數據進行保存、分析與顯示。 [2]
對于這種測試系統,負載采用被測系統的固有負載,因此測試過程貼近于伺服驅動器的實際工作情況,測試結果比較準確。但由于有的被測系統的固有負載不方便從裝備上移走,因此測試過程只能在裝備上進行,不是很方便。 [2]
5采用在線測試方法的測試平臺
這種測試系統只有數據采集系統和數據處理單元。數字采集系統將伺服驅動器在裝備中的實時運行狀態信號進行采集和調理,然后送給數據處理單元供其進行處理和分析,最終由數據處理單元做出測試結論。由于采用在線測試方法,因此這種測試系統結構比較簡單,而且不用將伺服驅動器從裝備中分離出來,使測試更加便利。此類測試系統*根據伺服驅動器在實際運行中進行測試,因此測試結論更加貼近實際情況。但是由于許多伺服驅動器在制造和裝配方面的特點,此類測試系統中的各種傳感器及信號測量元件的安裝位置很難選擇。而且裝備中的其它部分如果出現故障,也會給伺服驅動器的工作狀態造成不良影響,最終影響其測試結果。 [2]
有關參數編輯
位置比例增益
1、設定位置環調節器的比例增益;
2、設置值越大,增益越高,剛度越大,相同頻率指令脈沖條件下,位置滯后量越小。但數值太大可能會引起振蕩或超調;
3、參數數值由具體的伺服系統型號和負載情況確定。
位置前饋增益
1、設定位置環的前饋增益;
2、設定值越大時,表示在任何頻率的指令脈沖下,位置滯后量越小;
3、位置環的前饋增益大,控制系統的高速響應特性提高,但會使系統的位置不穩定,容易產生振蕩;
4、不需要很高的響應特性時,本參數通常設為0表示范圍:0~100%。
速度比例增益
1、設定速度調節器的比例增益;
2、設置值越大,增益越高,剛度越大。參數數值根據具體的伺服驅動系統型號和負載值情況確定。一般情況下,負載慣量越大,設定值越大;
3、在系統不產生振蕩的條件下,盡量設定較大的值。
速度積分時間常數
1、設定速度調節器的積分時間常數;
2、設置值越小,積分速度越快。參數數值根據具體的伺服驅動系統型號和負載情況確定。一般情況下,負載慣量越大,設定值越大;
3、在系統不產生振蕩的條件下,盡量設定較小的值。
速度反饋濾波因子
1、設定速度反饋低通濾波器特性;
2、數值越大,截止頻率越低,電機產生的噪音越小。如果負載慣量很大,可以適當減小設定值。數值太大,造成響應變慢,可能會引起振蕩;
3、數值越小,截止頻率越高,速度反饋響應越快。如果需要較高的速度響應,可以適當減小設定值。
*輸出轉矩設置
1、設置伺服電機的內部轉矩限制值;
2、設置值是額定轉矩的百分比;
3、任何時候,這個限制都有效定位完成范圍;
4、設定位置控制方式下定位完成脈沖范圍;
5、本參數提供了位置控制方式下驅動器判斷是否完成定位的依據,當位置偏差計數器內的剩余脈沖數小于或等于本參數設定值時,驅動器認為定位已完成,到位開關信號為 ON,否則為OFF;
6、在位置控制方式時,輸出位置定位完成信號,加減速時間常數;
7、設置值是表示電機從0~2000r/min的加速時間或從2000~0r/min的減速時間;
8、加減速特性是線性的到達速度范圍;
9、設置到達速度;
10、在非位置控制方式下,如果電機速度超過本設定值,則速度到達開關信號為ON,否則為OFF;
11、在位置控制方式下,不用此參數;
12、與旋轉方向關。
應用領域編輯
伺服驅動器廣泛應用于注塑機領域、紡織機械、包裝機械、數控機床領域等。
控制器特點編輯
調速比1:5000
轉數比0.3:1500
有位置控制
有零速鎖定
過載能力200[%]―300[%]
起動力矩大
轉速不受負載影響
三閉環控制
相關區別編輯
1、伺服控制器通過自動化接口可很方便地進行操作模塊和現場總線模塊的轉換,同時使用不同的現場總線模塊實現不同的控制模式(RS232、RS485、光纖、InterBus、ProfiBus),而通用變頻器的控制方式比較單一。
2、伺服控制器直接連接旋轉變壓器或編碼器,構成速度、位移控制閉環。而通用變頻器只能組成開環控制系統。
3伺服控制器的各項控制指標(如穩態精度和動態性能等)優于通用變頻器。
BAUMULLER-1191 DSOG 100—M
BAUMULLER-1192 BM4-0-PLC-01-01-02
BAUMULLER-1193 DS100S 21001080 Art.Nr.:258928
BAUMULLER-1194 GDM 12 Z ErzNr.59410400
BAUMULLER-1195 BM4443-SI2-21300-0308-1
BAUMULLER-1196 BM4453-SI2-01343-0308-1
BAUMULLER-1197 DSD100 S64U45-5 5.9KW 4500RPM
BAUMULLER-1198 DS71-M 8.9KW 3000RPM
BAUMULLER-1199 Typ: DSG 56-L Br.24V
BAUMULLER-1200 Typ: DSG 56-L Br.24V
BAUMULLER-1201 Typ:BM4422-ST1-02200-03
BAUMULLER-1202 NR:21004284 TYP:DSG 56-M
BAUMULLER-1203 NR:21004130 TYP:DS71-M
BAUMULLER-1204 NR:20916654 TYP:DS56-M
BAUMULLER-1205 NR:21001990 TYP:DSG45 M35
BAUMULLER-1206 SERVO MOTOR DS100K54U30-5
BAUMULLER-1207 DS100-M 391172
BAUMULLER-1208 DA 132 B 54A 17-5IP54
BAUMULLER-1209 BUM 60- 30/60-31-B-000
BAUMULLER-1210 BUM617-12/18-31-R-0001-A010-03
BAUMULLER-1211 DSM125/6F-ST100/13
BAUMULLER-1212 DS45-M 0.75KW, S3-4090,IB64/6
BAUMULLER-1213 DS56-L 00209185
BAUMULLER-1214 DSOG100S45 19KW 50/60HZ
BAUMULLER-1215 BKF12/200/604000000
BAUMULLER-1216 GZ02-L8/2W-A
BAUMULLER-1217 DSD036S65U4031
BAUMULLER-1218 DSOG100S45 NR.20910677
伺服驅動器(servo drives)又稱為“伺服控制器"、“伺服放大器",是用來控制伺服電機的一種控制器,其作用類似于變頻器作用于普通交流馬達,屬于伺服系統的一部分,主要應用于高精度的定位系統。一般是通過位置、速度和力矩三種方式對伺服電機進行控制,實現高精度的傳動系統定位,目前是傳動技術的產品。
中文名 伺服驅動器 外文名 servo drives 別 名伺服控制器、伺服放大器 實 質 控制伺服電機的一種控制器
伺服驅動器是現代運動控制的重要組成部分,被廣泛應用于工業機器人及數控加工中心等自動化設備中。尤其是應用于控制交流永磁同步電機的伺服驅動器已經成為國內外研究熱點。當前交流伺服驅動器設計中普遍采用基于矢量控制的電流、速度、位置3閉環控制算法。該算法中速度閉環設計合理與否,對于整個伺服控制系統,特別是速度控制性能的發揮起到關鍵作用 [1] 。
在伺服驅動器速度閉環中,電機轉子實時速度測量精度對于改善速度環的轉速控制動靜態特性至關重要。為尋求測量精度與系統成本的平衡,一般采用增量式光電編碼器作為測速傳感器,與其對應的常用測速方法為M/T測速法。M/T測速法雖然具有一定的測量精度和較寬的測量范圍,但這種方法有其固有的缺陷,主要包括:1)測速周期內必須檢測到至少一個完整的碼盤脈沖,限制了可測轉速;2)用于測速的2個控制系統定時器開關難以嚴格保持同步,在速度變化較大的測量場合中法保證測速精度。因此應用該測速法的傳統速度環設計方案難以提高伺服驅動器速度跟隨與控制性能 [1] 。
工作原理編輯
目前主流的伺服驅動器均采用數字信號處理器(DSP)作為控制核心,
可以實現比較復雜的控制算法,實現數字化、網絡化和智能化。功率器件普遍采用以智能功率模塊(IPM)為核心設計的驅動電路,IPM內部集成了驅動電路,同時具有過電壓、過電流、過熱、欠壓等故障檢測保護電路,在主回路中還加入軟啟動電路,以減小啟動過程對驅動器的沖擊。功率驅動單元首先通過三相全橋整流電路對輸入的三相電或者市電進行整流,得到相應的直流電。經過整流好的三相電或市電,再通過三相正弦PWM電壓型逆變器變頻來驅動三相永磁式同步交流伺服電機。功率驅動單元的整個過程可以簡單的說就是AC-DC-AC的過程。整流單元(AC-DC)主要的拓撲電路是三相全橋不控整流電路。
隨著伺服系統的大規模應用,伺服驅動器使用、伺服驅動器調試、伺服驅動器維修都是伺服驅動器在當今比較重要的技術課題,越來越多工控技術服務商對伺服驅動器進行了技術深層次研究。
伺服驅動器是現代運動控制的重要組成部分,被廣泛應用于工業機器人及數控加工中心等自動化設備中。尤其是應用于控制交流永磁同步電機的伺服驅動器已經成為國內外研究熱點。當前交流伺服驅動器設計中普遍采用基于矢量控制的電流、速度、位置3閉環控制算法。該算法中速度閉環設計合理與否,對于整個伺服控制系統,特別是速度控制性能的發揮起到關鍵作用。
基本要求編輯
伺服進給系統的要求
1、調速范圍寬
2、定位精度高
3、有足夠的傳動剛性和高的速度穩定性
4、快速響應,超調
為了保證生產率和加工質量,除了要求有較高的定位精度外,還要求有良好的快速響應特性,即要求跟蹤指令信號的響應要快,因為數控系統在啟動、制動時,要求加、減加速度足夠大,縮短進給系統的過渡過程時間,減小輪廓過渡誤差。
5、低速大轉矩,過載能力強
一般來說,伺服驅動器具有數分鐘甚至半小時內1.5倍以上的過載能力,在短時間內可以過載4~6倍而不損壞。
6、可靠性高
要求數控機床的進給驅動系統可靠性高、工作穩定性好,具有較強的溫度、濕度、振動等環境適應能力和很強的抗干擾的能力。
對電機的要求
1、從速到最高速電機都能平穩運轉,轉矩波動要小,尤其在低速如0.1r/min或更低速時,仍有平穩的速度而爬行現象。
2、電機應具有大的較長時間的過載能力,以滿足低速大轉矩的要求。一般直流伺服電機要求在數分鐘內過載4~6倍而不損壞。
3、為了滿足快速響應的要求,電機應有較小的轉動慣量和大的堵轉轉矩,并具有盡可能小的時間常數和啟動電壓。
4、電機應能承受頻繁啟、制動和反轉。
測試平臺編輯
目前,伺服驅動器的測試平臺主要有以下幾種:采用伺服驅動器—電動機互饋對拖的測試平臺、采用可調模擬負載的測試平臺、采用有執行電機而沒有負載的測試平臺、采用執行電機拖動固有負載的測試平臺和采用在線測試方法的測試平臺 [2] 。
1采用伺服驅動器—電動機互饋對拖的測試平臺
這種測試系統由四部分組成,分別是三相PWM整流器、被測伺服驅動器—電動機系統、負載伺服驅動器—電動機系統及上位機,其中兩臺電動機通過聯軸器互相連接。被測電動機工作于電動狀態,負載電動機工作于發電狀態。被測伺服驅動器—電動機系統工作于速度閉環狀態,用來控制整個測試平臺的轉速,負載伺服驅動器—電動機系統工作于轉矩閉環狀態,通過控制負載電動機的電流來改變負載電動機的轉矩大小,模擬被測電機的負載變化,這樣互饋對拖測試平臺可以實現速度和轉矩的靈活調節,完成各種試驗功能測試。上位機用于監控整個系統的運行,根據試驗要求向兩臺伺服驅動器發出控制指令,同時接收它們的運行數據,并對數據進行保存、分析與顯示。 [2]
對于這種測試系統,采用高性能的矢量控制方式對被測電動機和負載設備分別進行速度和轉矩控制,即可模擬各種負載情況下伺服驅動器的動、靜態性能,完成對伺服驅動器的全面而準確的測試。但由于使用了兩套伺服驅動器—電動機系統,所以這種測試系統體積龐大,不能滿足便攜式的要求,而且系統的測量和控制電路也比較復雜、成本也很高。 [2]
2采用可調模擬負載的測試平臺
這種測試系統由三部分組成,分別是被測伺服驅動器—電動機系統、可調模擬負載及上位機。可調模擬負載如磁粉制動器、電力測功機等,它和被測電動機同軸相連。上位機和數據采集卡通過控制可調模擬負載來控制負載轉矩,同時采集伺服系統的運行數據,并對數據進行保存、分析與顯示。對于這種測試系統,通過對可調模擬負載進行控制,也可模擬各種負載情況下伺服驅動器的動、靜態性能,完成對伺服驅動器的全面而準確的測試。但這種測試系統體積仍然比較大,不能滿足便攜式的要求,而且系統的測量和控制電路也比較復雜、成本也很高。 [2]
3采用有執行電機而沒有負載的測試平臺
這種測試系統由兩部分組成,分別是被測伺服驅動器—電動機系統和上位機。上位機將速度指令信號發送給伺服驅動器,伺服驅動器按照指令開始運行。在運行過程中,上位機和數據采集電路采集伺服系統的運行數據,并對數據進行保存、分析與顯示。由于這種測試系統中電機不帶負載,所以與前面兩種測試系統相比,該系統體積相對減小,而且系統的測量和控制電路也比較簡單,但是這也使得該系統不能模擬伺服驅動器的實際運行情況。通常情況下,此類測試系統僅用于被測系統在空載情況下的轉速和角位移的測試,而不能對伺服驅動器進行全面而準確的測試。 [2]
4采用執行電機拖動固有負載的測試平臺
這種測試系統由三部分組成,分別是被測伺服驅動器—電動機系統、系統固有負載及上位機。上位機將速度指令信號發送給伺服驅動器,伺服系統按照指令開始運行。在運行過程中,上位機和數據采集電路采集伺服系統的運行數據,并對數據進行保存、分析與顯示。 [2]
對于這種測試系統,負載采用被測系統的固有負載,因此測試過程貼近于伺服驅動器的實際工作情況,測試結果比較準確。但由于有的被測系統的固有負載不方便從裝備上移走,因此測試過程只能在裝備上進行,不是很方便。 [2]
5采用在線測試方法的測試平臺
這種測試系統只有數據采集系統和數據處理單元。數字采集系統將伺服驅動器在裝備中的實時運行狀態信號進行采集和調理,然后送給數據處理單元供其進行處理和分析,最終由數據處理單元做出測試結論。由于采用在線測試方法,因此這種測試系統結構比較簡單,而且不用將伺服驅動器從裝備中分離出來,使測試更加便利。此類測試系統*根據伺服驅動器在實際運行中進行測試,因此測試結論更加貼近實際情況。但是由于許多伺服驅動器在制造和裝配方面的特點,此類測試系統中的各種傳感器及信號測量元件的安裝位置很難選擇。而且裝備中的其它部分如果出現故障,也會給伺服驅動器的工作狀態造成不良影響,最終影響其測試結果。 [2]
有關參數編輯
位置比例增益
1、設定位置環調節器的比例增益;
2、設置值越大,增益越高,剛度越大,相同頻率指令脈沖條件下,位置滯后量越小。但數值太大可能會引起振蕩或超調;
3、參數數值由具體的伺服系統型號和負載情況確定。
位置前饋增益
1、設定位置環的前饋增益;
2、設定值越大時,表示在任何頻率的指令脈沖下,位置滯后量越小;
3、位置環的前饋增益大,控制系統的高速響應特性提高,但會使系統的位置不穩定,容易產生振蕩;
4、不需要很高的響應特性時,本參數通常設為0表示范圍:0~100%。
速度比例增益
1、設定速度調節器的比例增益;
2、設置值越大,增益越高,剛度越大。參數數值根據具體的伺服驅動系統型號和負載值情況確定。一般情況下,負載慣量越大,設定值越大;
3、在系統不產生振蕩的條件下,盡量設定較大的值。
速度積分時間常數
1、設定速度調節器的積分時間常數;
2、設置值越小,積分速度越快。參數數值根據具體的伺服驅動系統型號和負載情況確定。一般情況下,負載慣量越大,設定值越大;
3、在系統不產生振蕩的條件下,盡量設定較小的值。
速度反饋濾波因子
1、設定速度反饋低通濾波器特性;
2、數值越大,截止頻率越低,電機產生的噪音越小。如果負載慣量很大,可以適當減小設定值。數值太大,造成響應變慢,可能會引起振蕩;
3、數值越小,截止頻率越高,速度反饋響應越快。如果需要較高的速度響應,可以適當減小設定值。
*輸出轉矩設置
1、設置伺服電機的內部轉矩限制值;
2、設置值是額定轉矩的百分比;
3、任何時候,這個限制都有效定位完成范圍;
4、設定位置控制方式下定位完成脈沖范圍;
5、本參數提供了位置控制方式下驅動器判斷是否完成定位的依據,當位置偏差計數器內的剩余脈沖數小于或等于本參數設定值時,驅動器認為定位已完成,到位開關信號為 ON,否則為OFF;
6、在位置控制方式時,輸出位置定位完成信號,加減速時間常數;
7、設置值是表示電機從0~2000r/min的加速時間或從2000~0r/min的減速時間;
8、加減速特性是線性的到達速度范圍;
9、設置到達速度;
10、在非位置控制方式下,如果電機速度超過本設定值,則速度到達開關信號為ON,否則為OFF;
11、在位置控制方式下,不用此參數;
12、與旋轉方向關。
應用領域編輯
伺服驅動器廣泛應用于注塑機領域、紡織機械、包裝機械、數控機床領域等。
控制器特點編輯
調速比1:5000
轉數比0.3:1500
有位置控制
有零速鎖定
過載能力200[%]―300[%]
起動力矩大
轉速不受負載影響
三閉環控制
相關區別編輯
1、伺服控制器通過自動化接口可很方便地進行操作模塊和現場總線模塊的轉換,同時使用不同的現場總線模塊實現不同的控制模式(RS232、RS485、光纖、InterBus、ProfiBus),而通用變頻器的控制方式比較單一。
2、伺服控制器直接連接旋轉變壓器或編碼器,構成速度、位移控制閉環。而通用變頻器只能組成開環控制系統。
3伺服控制器的各項控制指標(如穩態精度和動態性能等)優于通用變頻器。
BAUMULLER電機GZ02-M8/2W-A NR:21118658
在緊鄰發電站的地方,由中國援建的一座新電站正在建設中。發電站運營主任手指的山地被削平,從大壩流出的河水上架設有施工用的橋梁,懸掛著的紅色條幅上用漢字書寫著“安全*"。他表示,幾乎所有工人都是中國企業從本國帶來的,內部是什么樣子他也不清楚。
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,化工儀器網對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。