茶樹(shù)是一種典型的葉片型植物,具有獨(dú)*的表型特征。例如,茶樹(shù)的葉面積與產(chǎn)量直接相關(guān),而茶芽的形態(tài)則是中國(guó)綠茶等級(jí)評(píng)定的重要依據(jù)。茶葉中的茶多酚和茶氨酸含量對(duì)其風(fēng)味和口感有著至關(guān)重要的影響。此外,茶葉的生長(zhǎng)品質(zhì)會(huì)受到多種因素的影響,包括光照、溫度、水分和肥料。這些因素對(duì)茶葉質(zhì)量有復(fù)雜的影響,使得專(zhuān)家難以精確預(yù)測(cè)茶葉的品質(zhì)變化和進(jìn)行合理的茶園管理。
傳統(tǒng)的方法是專(zhuān)家根據(jù)天氣、茶葉生長(zhǎng)的變化和新鮮茶葉的顏色或形狀來(lái)管理茶園。這種管理方式不僅耗費(fèi)大量人力,還高度依賴(lài)專(zhuān)家經(jīng)驗(yàn),難以適應(yīng)大規(guī)模茶園的生產(chǎn)需求。為了滿(mǎn)足高通量、快速且準(zhǔn)確的檢測(cè)需求,高光譜遙感(HSI)使植物的物種分類(lèi)和生物化學(xué)參數(shù)監(jiān)測(cè)成為可能,因?yàn)楦吖庾V數(shù)據(jù)包含大量的窄光譜通道,可以檢測(cè)到窄吸收特征的細(xì)微變化。該技術(shù)采用光譜和空間信息的多模態(tài)數(shù)據(jù),結(jié)合機(jī)器學(xué)習(xí)和人工智能技術(shù),可以實(shí)現(xiàn)茶葉種植過(guò)程中品質(zhì)自動(dòng)化和精確檢測(cè),該技術(shù)不僅提高了檢測(cè)效率,減少了人為誤差,還提供了更客觀(guān)和準(zhǔn)確的植物性狀呈現(xiàn)。近年來(lái),HSI技術(shù)在茶樹(shù)室外栽培管理中得到了廣泛應(yīng)用,常用于茶樹(shù)葉片營(yíng)養(yǎng)分析、茶園土壤分析,以及茶樹(shù)的病蟲(chóng)害監(jiān)測(cè),逐步成為茶葉種植管理中重要的監(jiān)測(cè)手段。
高光譜成像技術(shù)在茶葉的栽培管理監(jiān)測(cè)中,通常應(yīng)用于茶樹(shù)葉片營(yíng)養(yǎng)分析、茶園種植土壤分析,也有將其應(yīng)用于茶樹(shù)抗旱資源的篩選。多數(shù)研究集中于葉綠素監(jiān)測(cè),通過(guò)監(jiān)測(cè)葉綠素含量實(shí)現(xiàn)多茶葉栽培的管理。
Dutta等(Dutta et al., 2015)利用多種多元分析方法對(duì)347-2506 nm范圍內(nèi)的實(shí)地測(cè)量高光譜數(shù)據(jù)進(jìn)行分析,篩選出最佳預(yù)測(cè)模型,并建立了一階導(dǎo)數(shù)光譜偏最小二乘回歸(FDR-PLSR)模型,以準(zhǔn)確估計(jì)茶葉中的茶多酚含量。該模型展示了較高的預(yù)測(cè)精度。證明了高光譜技術(shù)在空間尺度上估計(jì)和監(jiān)測(cè)茶葉質(zhì)量的可能性。
Tu等(Tu et al., 2018)利用無(wú)人機(jī)搭載的450-998 nm高光譜相機(jī)(圖13)采集茶樹(shù)樹(shù)冠的光譜數(shù)據(jù),對(duì)大規(guī)模茶園中的茶樹(shù)品種進(jìn)行精確分類(lèi)。通過(guò)標(biāo)準(zhǔn)正態(tài)變量變換(SNV)對(duì)高光譜數(shù)據(jù)進(jìn)行預(yù)處理,并使用偏最小二乘回歸(PLSR)預(yù)測(cè)茶多酚和氨基酸含量,預(yù)測(cè)結(jié)果顯示茶多酚與氨基酸比值(茶葉感官品質(zhì)的主要指標(biāo))的模型精度較好。這表明光譜數(shù)據(jù)與茶葉質(zhì)量指標(biāo)之間存在關(guān)聯(lián)性。
圖13. 無(wú)人機(jī)搭載高光譜相機(jī)設(shè)備
Jiang等(Jiang et al., 2024)利用不同的高光譜處理方法,確定了影響茶樹(shù)生長(zhǎng)參數(shù)(生物量和氮積累)的敏感高光譜特征,并利用機(jī)器學(xué)習(xí)算法建立了基于多類(lèi)型敏感光譜信息的茶樹(shù)生物量和氮積累估算模型,最后評(píng)價(jià)了模型在全年不同時(shí)期監(jiān)測(cè)茶樹(shù)生物量和氮積累的準(zhǔn)確性。該研究利用高光譜遙感技術(shù)實(shí)現(xiàn)了快速、無(wú)損地估算茶樹(shù)生長(zhǎng)和氮營(yíng)養(yǎng)狀況,對(duì)茶園的精準(zhǔn)管理具有重要意義。本研究中茶樹(shù)高光譜圖像的采集方法如圖14所示。
圖14. 茶樹(shù)高光譜圖像的采集方法
Chen等(Chen et al., 2022)通過(guò)獲取茶樹(shù)表型的高光譜圖像(圖15),結(jié)合相關(guān)生理指標(biāo)進(jìn)行了建模,并對(duì)幾種茶葉種質(zhì)資源進(jìn)行旱水化試驗(yàn)。收集了生理生化和高光譜數(shù)據(jù),分析了不同生理生化指標(biāo)在評(píng)估茶樹(shù)抗旱性中的權(quán)重,采用不同算法對(duì)原始光譜數(shù)據(jù)進(jìn)行處理,并建立了Tea-DTC預(yù)測(cè)模型。結(jié)果表明,基于高光譜和機(jī)器學(xué)習(xí)技術(shù)的Tea-DTC模型可作為一種新方法,用于茶葉耐旱性種質(zhì)資源的篩選和評(píng)價(jià)。
圖15. 茶葉光譜數(shù)據(jù)提取過(guò)程
Li等(Li et al., 2024)提出了一種利用高光譜成像技術(shù)監(jiān)測(cè)茶葉扦插苗莖根生長(zhǎng)的方法。首先,利用Mask R-CNN提取茶苗的成熟葉和芽光譜。然后采用MSC、S-G、一維濾波技術(shù)對(duì)光譜進(jìn)行預(yù)處理,通過(guò)UVE、CARS和SPA篩選特征波段。最后,利用CNN-GRU網(wǎng)絡(luò)預(yù)測(cè)莖和根生物量,并與CNN和LSTM的SVR、RFR、PLSR機(jī)器學(xué)習(xí)方法和深度學(xué)習(xí)方法進(jìn)行比較(圖16)。結(jié)果表明Mask R-CNN能夠準(zhǔn)確提取成熟葉片和芽的光譜;UVE篩選出的芽和根生物量的光譜特征波段比CARS和SPA方法更為全面;基于芽光譜的UVE+CNN-GRU模型為芽生物量的預(yù)測(cè)提供了*優(yōu)結(jié)果,而基于成熟葉片光譜的SPA+LSTM模型則對(duì)根系生物量的估計(jì)最為精準(zhǔn)。這些發(fā)現(xiàn)表明,結(jié)合深度學(xué)習(xí)算法的高光譜成像技術(shù)可以快速準(zhǔn)確地監(jiān)測(cè)扦插苗的生長(zhǎng)情況,且不會(huì)造成損害。這不僅為高效篩選茶葉優(yōu)良品種提供了新的數(shù)據(jù)來(lái)源和技術(shù)手段,而且提高了農(nóng)業(yè)生產(chǎn)效率和資源利用率。
圖16. 基于高光譜成像技術(shù)監(jiān)測(cè)茶葉扦插苗從扦插到長(zhǎng)成苗的生物量變化
在植物病蟲(chóng)害檢測(cè)研究中,植物葉片被病菌感染后往往出現(xiàn)不同形式的病斑、壞死或萎蔫區(qū),色素含量和活性降低,導(dǎo)致可見(jiàn)光區(qū)的反射率增加,紅邊(670-730 nm)向短波方向移動(dòng)。在這些病蟲(chóng)害侵染植物的過(guò)程中,光譜響應(yīng)與病蟲(chóng)害引起的植物色素、水分、葉面積等生化物質(zhì)的癥狀有關(guān)。
Yuan等(Yuan et al., 2019)通過(guò)觀(guān)察450-950 nm波長(zhǎng)范圍內(nèi)炭疽病引起的紅移現(xiàn)象,篩選出適合于檢測(cè)炭疽病的最佳高光譜特征集,并進(jìn)一步利用自相關(guān)分析準(zhǔn)確、快速識(shí)別茶葉上的炭疽病區(qū)域。他們將無(wú)監(jiān)督分類(lèi)和二維閾值適應(yīng)相結(jié)合,構(gòu)建了一個(gè)用于痂檢測(cè)的分析框架,在像素水平上識(shí)別疾病的總體準(zhǔn)確率達(dá)到94%(圖17)。證明了高光譜技術(shù)有助于提高茶樹(shù)病害檢測(cè)和田間管理水平。
圖17. 基于高光譜成像的茶樹(shù)炭疽病檢測(cè)工作流程示意圖
Cui等(Cui et al., 2021)提出了一種基于冠層高光譜數(shù)據(jù)(450-950 nm)的方法,用于檢測(cè)和區(qū)分外觀(guān)特征相似的三種茶樹(shù)脅迫(炭疽病、茶葉蟲(chóng)害和曬傷)。通過(guò)光譜靈敏度分析,他們確定了去除植物背景、識(shí)別植物損傷區(qū)域以及區(qū)分茶樹(shù)脅迫類(lèi)型的最佳光譜特征。隨后,研究利用k均值聚類(lèi)和KNN算法構(gòu)建了茶樹(shù)損傷區(qū)域的檢測(cè)模型,并通過(guò)Fisher線(xiàn)性判別法準(zhǔn)確區(qū)分損傷區(qū)域的脅迫類(lèi)型(圖18)。模型驗(yàn)證結(jié)果顯示,損傷區(qū)域檢測(cè)的準(zhǔn)確率達(dá)到95%,脅迫類(lèi)型識(shí)別的準(zhǔn)確率高達(dá)98%。從以上研究可以看出,基于高光譜成像數(shù)據(jù)的研究方法主要是通過(guò)各種統(tǒng)計(jì)判別或數(shù)據(jù)挖掘算法,建立光譜特征與病蟲(chóng)害類(lèi)型之間的關(guān)系,從而達(dá)到對(duì)不同類(lèi)型脅迫下侵染區(qū)域的準(zhǔn)確分析。揭示了該技術(shù)在大規(guī)模茶園病害管理特別是實(shí)時(shí)監(jiān)測(cè)和準(zhǔn)確診斷方面的潛在應(yīng)用。
圖18. 基于高光譜成像技術(shù)的茶樹(shù)脅迫檢測(cè)與區(qū)分流程圖
高光譜成像技術(shù)在茶葉研究中的應(yīng)用日益深入,展現(xiàn)出巨大的潛力。該技術(shù)結(jié)合了成像與光譜分析的優(yōu)勢(shì),生成包含空間和光譜信息的三維數(shù)據(jù)立方體,從而克服了傳統(tǒng)成像和光譜技術(shù)的局限。通過(guò)高光譜成像,能夠無(wú)損、精確地分析茶葉中的生物活性成分,如茶多酚、咖*因和氨基酸等。同時(shí),這項(xiàng)技術(shù)的應(yīng)用已經(jīng)從實(shí)驗(yàn)室擴(kuò)展至茶樹(shù)種植的實(shí)際檢測(cè)中,包括茶樹(shù)營(yíng)養(yǎng)狀態(tài)、土壤成分以及病蟲(chóng)害的監(jiān)測(cè)等方面。
然而,高光譜成像產(chǎn)生的大量光譜數(shù)據(jù)對(duì)農(nóng)產(chǎn)品的快速檢測(cè)應(yīng)用提出了挑戰(zhàn)。要解決這一問(wèn)題,必須從冗余的數(shù)據(jù)中提取有價(jià)值的特征信息,并開(kāi)發(fā)合適的預(yù)測(cè)模型。此外,非專(zhuān)業(yè)人士可能面臨數(shù)據(jù)處理和建模方面的挑戰(zhàn),這可能會(huì)阻礙該技術(shù)與生產(chǎn)線(xiàn)的整合。隨著人工智能和機(jī)器學(xué)習(xí)技術(shù)的發(fā)展,未來(lái)希望高光譜成像技術(shù)在茶葉檢測(cè)中的應(yīng)用更加自動(dòng)化和智能化。結(jié)合大數(shù)據(jù)分析與建模,有望進(jìn)一步提高茶葉品質(zhì)預(yù)測(cè)的準(zhǔn)確性,助力茶葉產(chǎn)業(yè)的標(biāo)準(zhǔn)化和現(xiàn)代化進(jìn)程。同時(shí),技術(shù)的推廣與應(yīng)用將推動(dòng)茶葉全產(chǎn)業(yè)鏈的升級(jí),從茶葉種植到加工再到銷(xiāo)售,帶來(lái)更具效率和品質(zhì)保障的生產(chǎn)模式。
Chen, S., Shen, J., Fan, K., Qian, W., Gu, H., Li, Y., Zhang, J., Han, X., Wang, Y., & Ding, Z. (2022). Hyperspectral machine-learning model for screening tea germplasm resources with drought tolerance. Frontiers in Plant Science, 13, 1048442.
Cui, L., Yan, L., Zhao, X., Yuan, L., Jin, J., & Zhang, J. (2021). Detection and Discrimination of Tea Plant Stresses Based on Hyperspectral Imaging Technique at a Canopy Level. Phyton, 90(2), 621–634.
Dutta, D., Das, P. K., Bhunia, U. K., Singh, U., Singh, S., Sharma, J. R., & Dadhwal, V. K. (2015). Retrieval of tea polyphenol at leaf level using spectral transformation and multi-variate statistical approach. International Journal of Applied Earth Observation and Geoinformation, 36, 22–29.
Jiang, J., Ji, H., Yan, Y., Zhao, L., Pan, R., Liu, X., Yin, J., Duan, Y., Ma, Y., Zhu, X., & Fang, W. (2024). Mining sensitive hyperspectral feature to non-destructively monitor biomass and nitrogen accumulation status of tea plant throughout the whole year. Computers and Electronics in Agriculture, 225.
Li, H., Mao, Y., Shi, H., Fan, K., Sun, L., Zaman, S., Shen, J., Li, X., Bi, C., Shen, Y., Xu, Y., Chen, H., Ding, Z., & Wang, Y. (2024). Establishment of deep learning model for the growth of tea cutting seedlings based on hyperspectral imaging technique. Scientia Horticulturae, 331, 113106.
Tu, Y., Bian, M., Wan, Y., & Fei, T. (2018). Tea cul*ivar classification and biochemical parameter estimation from hyperspectral imagery obtained by UAV. PeerJ, 6, e4858.
Yuan, L., Yan, P., Han, W., Huang, Y., Wang, B., Zhang, J., Zhang, H., & Bao, Z. (2019). Detection of anthracnose in tea plants based on hyperspectral imaging. Computers and Electronics in Agriculture, 167, 105039.
(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)
立即詢(xún)價(jià)
您提交后,專(zhuān)屬客服將第一時(shí)間為您服務(wù)