国产一级a毛一级a看免费视频,久久久久久国产一级AV片,免费一级做a爰片久久毛片潮,国产精品女人精品久久久天天,99久久久无码国产精品免费了

您好, 歡迎來到化工儀器網

| 注冊| 產品展廳| 收藏該商鋪

13810146393

technology

首頁   >>   技術文章   >>   利用高光譜成像設備建立茶苗生長深度學習模型

江蘇雙利合譜科技有限公司

立即詢價

您提交后,專屬客服將第一時間為您服務

利用高光譜成像設備建立茶苗生長深度學習模型

閱讀:318      發布時間:2024-5-21
分享:

背景:茶樹,作為一種至關重要的經濟作物,其種植卻時常受到惡劣天氣條件的困擾,導致茶苗生長緩慢且成本顯著增加,從而限制了茶樹良種的產業化進程。在茶樹育種中,扦插苗的新梢和根系的生物量作為衡量其生長發育的關鍵指標,其準確且快速的監測對于提高茶苗成活率至關重要。然而,傳統的茶樹扦插苗生物量分析方法主要依賴于人工測量,不僅費時費力,而且效率低下。幸運的是,隨著高通量表型技術的興起,我們能夠從圖像數據中快速提取出有用的表型特征。相較于傳統方法,高通量系統具有更高的效率、準確性和無損性,能夠更精準地呈現我們感興趣的植物特征。

實驗設計:利用高光譜成像設備(Gaia field Pro-V10, Dualix Spectral Imaging)采集整個育苗時期的茶樹扦插苗的光譜數據。采集系統的外部由一個黑色的暗箱封閉。此外,高光譜相機捕獲的圖像的光譜范圍在可見-近紅外波段(391-1010 nm)有1101 ×960像素,可以測量360波段的光譜反射率。為了減輕扦插苗生長后期葉片重疊的影響,對扦插苗的冠層進行了檢查,將被遮擋的成熟葉片和嫩枝移至視場。

結論:首先,利用Mask R-CNN網絡提取新梢和母葉的光譜反射率,其次,利用多元散射校正(MSC)、一階導數(1-D)和平滑濾波(S-G)算法對采集的原始高光譜數據進行預處理,并利用無信息變量消除(UVE)和競爭性自適應重加權(SPA)算法篩選預處理后高光譜數據的特征波段。最后,提出一種卷積神經網絡-門控循環網絡(CNN-GRU網絡用于估計扦插苗新梢和根系的生物量,并且與支持向量機(SVM)、隨機森林(RF)偏最小二乘法(PLS)三種機器學習方法和卷積神經網絡(CNN)、長短時記憶網絡(LSTM)兩種深度學習方法進行比較。

 

圖1 顯示了圖像采集和流程圖的組合。(a)圖像采集(b)數據處理流程圖

為了去除原始光譜數據的基線漂移、噪聲等信息,建立穩定、可靠的定量分析模型,我們結合S-G、MSC和1-D對光譜數據進行預處理。原始平均反射率光譜圖和預處理后光譜曲線如圖2所示。預處理后,可以清晰地觀察到光譜的吸收峰和反射谷更加突出,提高了光譜的靈敏度。

 

圖2 原始光譜與預處理的光譜

 

為了消除無關波段對模型精度的影響,我們使用UVE和SPA算法選擇特征波段,如圖3所示。

 圖3 特征波段的分布

 

最后基于選取的特征波段,利用新梢和母葉光譜結合CNN-GRU SVM、RF、PLSCNN、LSTM建立新梢和根系生物量的定量預測模型(圖4)。在新梢生物量的預測模型中,新梢光譜+ UVE + CNN-GRU模型的精度最高(RP2=0.90,RMSEP=0.12,RPD=2.43);在根系生物量的預測模型中,母葉光譜+ SPA+LSTM模型的精度最高(RP2=0.65,RMSEP=0.05,RPD=1.67)。

 圖4 模型的預測值和實際值的散點圖。(a)新梢光譜+ UVE + CNN-GRU;(b)母葉光譜+ UVE + CNN-GRU;(c)新梢光譜+ SPA + CNN;(d)母葉光譜+ SPA + LSTM。

 

本研究中高光譜成像技術和多種算法相結合建立的模型具有準確的預測結果,可用于監測茶樹扦插苗新梢和分析生物量這不僅為高效篩選茶葉優良品種提供了新的數據來源和技術手段,而且提高了農業生產效率和資源利用率。

作者簡介:毛藝霖,青島農業大學,研究生

參考文獻:

1.Ahmed, S., Griffin, T., Kraner, D., Schaffner, M., Sharma, D., Hazel, M., Leitch, A.,Orians, C., Han, W., Stepp, J., Robbat, A., Matyas, C., Long, C., Xue, D., Houser, R.,Cash, S., 2019. Environmental factors variably impact tea secondary metabolites inthe context of climate change. Front. Plant Sci. 10, 939. https://doi.org/10.3389/fpls.2019.00939.

2.Alabi, T.R., Abebe, A.T., Chigeza, G., Fowobaje, K.R., 2022. Estimation of soybean grainyield from multispectral high-resolution UAV data with machine learning models inWest Africa. Remote Sens. Appl. 27, 100782 https://doi.org/10.1016/j.rsase.2022.100782.

3.Cao, J., Zhang, Z., 2022. Study on deep learning model for online estimation ofchlorophyll content based on near ground multispectral feature bands. IEEE Access.

會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

您的留言已提交成功!我們將在第一時間回復您~
在線留言
主站蜘蛛池模板: 岳阳市| 靖安县| 亚东县| 饶河县| 台南县| 阿坝| 资溪县| 牡丹江市| 曲靖市| 双城市| 略阳县| 那曲县| 冀州市| 石家庄市| 连江县| 漳浦县| 谷城县| 阆中市| 镇原县| 个旧市| 潢川县| 沐川县| 老河口市| 普陀区| 通州市| 资讯| 建瓯市| 云龙县| 财经| 吉木萨尔县| 平湖市| 长顺县| 全南县| 偏关县| 于都县| 于田县| 米易县| 乌苏市| 静安区| 大悟县| 台中市|