詳細(xì)介紹
VEGF 血管內(nèi)皮生長(zhǎng)因子(兔多克隆)
廣州健侖生物科技有限公司
VEGF是一種分子量為34-50KDa的蛋白,由腫瘤細(xì)胞、血管內(nèi)皮細(xì)胞和巨噬細(xì)胞所合成,并通過自分泌/旁分泌方式特異地作用于血管內(nèi)皮細(xì)胞上的受體,具有促進(jìn)內(nèi)皮細(xì)胞生長(zhǎng)、增殖、遷移、細(xì)胞外基質(zhì)降解、血管管型結(jié)構(gòu)的形成等作用。在眾多血管再生性因子當(dāng)中,VEGF及其受體是*的介導(dǎo)新生血管生成的關(guān)鍵因素,它強(qiáng)烈促使血管內(nèi)皮有絲分裂并zui終形成新生血管,是刺激腫瘤血管生成zui強(qiáng)的細(xì)胞因子。此抗體識(shí)別VEGF,主要用于各種腫瘤組織中的血管生成和腫瘤轉(zhuǎn)移關(guān)系的研究。
我司還提供其它進(jìn)口或國(guó)產(chǎn)試劑盒:登革熱、瘧疾、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國(guó)SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢
VEGF 血管內(nèi)皮生長(zhǎng)因子(兔多克隆)
【產(chǎn)品介紹】
細(xì)胞定位:細(xì)胞漿
適用組織:石蠟/冰凍
陽性對(duì)照:肝細(xì)胞癌/肺癌
抗原修復(fù):熱修復(fù)(EDTA)
抗體孵育時(shí)間:30-60min
產(chǎn)品編號(hào) | 抗體名稱 | 克隆型別 |
OB234 | T-bet(T盒子轉(zhuǎn)錄因子) | MRQ-46 |
OB235 | TCL1試劑(T細(xì)胞淋巴瘤1) | MRQ-7 |
OB236 | TdT(末端脫氧核苷酸轉(zhuǎn)移酶) | polyclonal |
OB237 | TFE3試劑(轉(zhuǎn)錄因子E3) | MRQ-37 |
OB238 | Thyroglobulin(甲狀腺球蛋白) | DAK-Tg6 |
OB239 | Thyroglobulin(甲狀腺球蛋白) | 2H11+6E1 |
OB240 | TIA-1(T細(xì)胞胞漿內(nèi)抗原) | 2G9A10F5 |
OB241 | Topo Ⅱ α(拓?fù)洚悩?gòu)酶Ⅱα) | SD50 |
OB242 | TPO(甲狀腺過氧化物酶) | AC25 |
OB243 | TS(胸苷酸合成酶) | TS106 |
OB244 | TSH 甲狀腺刺激激素 | polyclonal |
OB245 | TTF-1(甲狀腺轉(zhuǎn)錄因子1) | 8G7G3/1 |
OB246 | TTF-1(甲狀腺轉(zhuǎn)錄因子1) | SPT24 |
OB247 | Tyrosinase(酪氨酸酶) | T311 |
OB248 | Uroplakin III試劑(尿溶蛋白III) | SP73 |
OB249 | VEGF(血管內(nèi)皮生長(zhǎng)因子) | VG1 |
OB250 | VEGF(血管內(nèi)皮生長(zhǎng)因子) | polyclonal |
OB251 | Villin(絨毛蛋白) | CWWB1 |
OB252 | Vimentin(波形蛋白) | V9 |
OB253 | Vimentin(波形蛋白) | SP20 |
OB254 | WT1(腎母細(xì)胞瘤) | EP122 |
OB255 | ZAP-70試劑(Zeta鏈相關(guān)蛋白激酶70) | 2F3.2 |
VEGF
想了解更多的產(chǎn)品及服務(wù)請(qǐng)掃描下方二維碼:
【公司名稱】 廣州健侖生物科技有限公司
【市場(chǎng)部】 歐
【】
【騰訊 】
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-103室
該公司稱,將使用此研究結(jié)果闡明皮膚老化機(jī)制。目前雖尚處于基礎(chǔ)研究階段,但從長(zhǎng)遠(yuǎn)來看,這將會(huì)推動(dòng)針對(duì)個(gè)人、不同敏感源的定制化妝品開發(fā)。
Nature Methods雜志在十周年之際推出了紀(jì)念特刊,點(diǎn)評(píng)了在過去十年中對(duì)生物學(xué)研究影響zui深的技術(shù),其中就包括細(xì)胞重編程。iPS技術(shù)*山中伸彌教授,在這此特刊中發(fā)表文章解讀了細(xì)胞重編程的命運(yùn)。山中伸彌教授因這一技術(shù)獲得了2012年的諾貝爾生理/醫(yī)學(xué)獎(jiǎng)。
iPS技術(shù)能將體細(xì)胞轉(zhuǎn)變?yōu)檎T導(dǎo)多能干細(xì)胞,有著很大的應(yīng)用潛力,不僅能加深人們對(duì)發(fā)育和疾病機(jī)制的理解,還可以在此基礎(chǔ)上進(jìn)行細(xì)胞治療。不過在這些美好的愿望實(shí)現(xiàn)之前,研究者們需要將動(dòng)物模型整合到現(xiàn)有方案中,并且定量描述驅(qū)動(dòng)重編程的基本過程。
自iPS技術(shù)誕生以來,細(xì)胞重編程研究如雨后春筍一般涌現(xiàn)出來。不論是基礎(chǔ)研究領(lǐng)域(解析單細(xì)胞如何發(fā)展成為*功能的生物體),還是醫(yī)學(xué)研究領(lǐng)域(理解疾病機(jī)制并進(jìn)行治療),都對(duì)理解和控制iPS過程寄予厚望。
The company said it will use the results of this study to elucidate the mechanism of skin aging. Although it is still in the basic research stage, it will promote the development of customized cosmetics targeting individuals and sensitive sources in the long run.
Nature Methods magazine celebrates its 10th anniversary with its memorial special feature reviewing the *0 technologies that have had the most profound impact on biology in the past decade, including cell reprogramming. Professor Natsumi Nakajima of iPS Technologies published an article in this special issue that explains the fate of cell reprogramming. Professor Yamanaka won the 2012 Nobel Prize in Physiology / Medicine for this technology.
iPS technology has the potential to transform somatic cells into induced pluripotent stem cells, which not only deepens people's understanding of developmental and disease mechanisms, but also on the basis of cellular therapy. But before these good wishes come true, researchers need to integrate animal models into their existing programs and quantitatively describe the basic process that drives reprogramming.
Since the birth of iPS technology, cell reprogramming research has sprung up all over the world. Whether it's basic research areas (how single cells develop into fully functional organisms) or areas of medical research (understanding disease mechanisms and treating them) have high hopes for understanding and controlling the iPS process.