日本CKD電磁閥概述,喜開理電磁閥
日本CKD電磁閥概述,喜開理電磁閥
1 日本CKD電磁閥概述
在很多有水力機械的地方,經常可以看到調節閥、減壓閥等節流閥的閥瓣和閥座等零件內部產生磨痕、深溝及凹坑,這些大多是由汽蝕引起的。汽蝕是一種水力流動現象,這種現象既能引起調節閥流通能力kV
減小,又能產生噪音、振動及對設備的損害,進而嚴重影響閥門的使用性能和壽命。因此控制和降低調節閥受汽蝕的影響是閥門設計和使用時要考慮的問題之一。
2 日本CKD電磁閥汽蝕和閃蒸
汽蝕是材料在液體的壓力和溫度達到臨界值時產生的一種破壞形式,分為閃蒸和空化兩個階段。閃蒸是一種非常快速的轉變過程,當流體流經調節閥時,由于閥座和閥瓣形成局部收縮的流通面積,產生局部阻力,使流體的壓力和速度發生變化(見圖1)
。當壓力為P1 的流體流經節流孔時,流速突然急劇增加,靜壓驟然下降,當孔后壓力P2 在達到該流體所在情況下的飽和蒸汽壓力Pv
前,部分流體汽化成氣體,產生氣泡,形成氣液兩相共存現象,稱為閃蒸階段,可見它是一種系統現象。調節閥不能避免閃蒸的產生,除非系統條件改變。而當閥門中液體的下游壓力又升回來,且高于飽和壓力時,升高的壓力壓縮氣泡,使之突然破裂,稱為空化階段。在空化過程中飽和氣泡不再存在,而是迅速爆破變回液態。由于氣泡的體積大多比相同的液體體積大。所以說,氣泡的爆破是從大體積向小體積的轉變。空化是一種從液態→飽和→液態的轉變過程,它不同于閃蒸現象。
汽蝕過程中氣泡破裂時所有的能量集中在破裂點上,產生幾千牛頓的沖擊力,沖擊波的壓力高達2 ×103 MPa
,大大超過了大部分金屬材料的疲勞破壞極限。同時,局部溫度高達幾千攝氏度,這些過熱點引起的熱應力是產生汽蝕破壞作用的主要因素。閃蒸產生侵蝕破壞作用,在零件表面形成光滑的磨痕。汽蝕如同砂子噴在零件表面一樣,將零件表層撕裂,形成粗糙的渣孔般的外表面。在高壓差惡劣條件下,極硬的閥瓣和閥座也會在很短時間內遭到破壞,發生泄漏,影響閥門的使用性能。同時汽蝕過程中,空化時氣泡破裂釋放出巨大的能量,引起內部零件的振動,產生高達10
kHz 的噪聲,氣泡越多,噪聲越嚴重。
3 日本CKD電磁閥防止汽蝕破壞的方法
調節閥里的閃蒸是不能預防的。所能做到的就是防止閃蒸的破壞。在調節閥設計中影響著閃蒸破壞的因素主要有閥門結構、材料性能和系統設計。對于空化破壞,可以采用曲折路徑、多級減壓和多孔節流的閥門結構形式予以防止。
1)
日本CKD電磁閥閥門結構。雖然閥門結構與產生閃蒸無關,但是卻能抑制閃蒸的破壞。采用介質由上至下方向流動的角形閥結構比用球形閥體更能防止閃蒸破壞。閃蒸破壞是高速度的飽和氣泡沖擊閥體表面,并腐蝕閥體表面造成的。由于角形閥中的介質直接流向閥體內部下游管道的中心,而不象球形閥一樣直接沖擊體壁,所以大大減弱了閃蒸的破壞力。
2)
材料選擇。一般情況下,高硬度的材料更能抵御閃蒸和空化的破壞。硬度高的材料一般用于制造閥體。如電力行業常選用鉻鉬合金鋼閥門,WC9
是常用抗腐蝕的材料之一。如果角形閥下游配裝材料硬度高的管道,其閥體可以選用碳鋼材料,因為僅僅在閥體下游部分才有閃蒸液體。
3) 系統設計。閃蒸現象是由系統設計所決定的,圖2 為加熱排水閥將閃蒸水排向冷凝器的系統。圖2a)
的閃蒸出現在調節閥與冷凝器之間的管道里,閃蒸破壞只會出現在這個區域。圖2b)的閃蒸現象產生在閥門的下游和冷凝器中。所以冷凝器相對于管道來說必須具有更大的容積,以防止高速度的氣泡沖擊材料表面。因此良好的系統設計有助于防止閃蒸破壞的發生。
日本CKD電磁閥概述,喜開理電磁閥