国产一级a毛一级a看免费视频,久久久久久国产一级AV片,免费一级做a爰片久久毛片潮,国产精品女人精品久久久天天,99久久久无码国产精品免费了

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
世聯博研(北京)科技有限公司>>多模式微孔板檢測儀免標記系統>>微孔板檢測儀免標記系統>>BYOSENS LYTE96BYOSENS LYTE96多模式微孔板檢測儀免標記系統

BYOSENS LYTE96多模式微孔板檢測儀免標記系統

返回列表頁
  • BYOSENS LYTE96多模式微孔板檢測儀免標記系統

收藏
舉報
參考價 面議
具體成交價以合同協議為準
  • 型號 BYOSENS LYTE96
  • 品牌
  • 廠商性質 代理商
  • 所在地 北京市

在線詢價 收藏產品 加入對比 查看聯系電話

更新時間:2017-06-10 23:25:02瀏覽次數:1048

聯系我們時請說明是化工儀器網上看到的信息,謝謝!

產品簡介

BYOSENS LYTE96便攜式無標記酶標儀

詳細介紹

簡單介紹新一代無標記酶標儀 BYOSENS LYTE96*臺便攜式無標記酶標儀  該BYOSENS LYTE96*臺便攜式無標記酶標儀是*款便攜式無標記酶標儀。根據康寧Epic系統它被設計為讀出96孔板,并進行了廣泛的細胞化驗。結合無線連接和集成電池結合,lyte96的緊湊的結構使得它*移動并易于在液體處理系統集成。 The next generation label-free reader BYOSENS LYTE96 THE

*臺便攜式無標記酶標儀,BYOSENS LYTE96 PORTABLE LABEL-FREEMICROPLATE READER的詳細介紹

 

 

 

BYOSENS LYTE96*臺便攜式無標記酶標儀(便攜微孔板檢測器)

 

 

 

LYTE96便攜式無標記酶標儀(便攜微孔板檢測器)是基于康寧Epic系統設計的,可進行一系列細胞內試驗的96孔微孔板讀出設備。lyte96將無線連接和集成電池結合放置到一個緊湊的結構中,使得它方便移動和易于整合進液體處理系統。主要是對系列廣泛的生物反應進行檢測,如信號轉導、細胞凋亡、細胞毒素,貼壁、增殖和擴散等。

lyte96無標記便攜生物傳感器的工作原理是基于折射波導光柵光學生物傳感器。傳感器結構由一個三層系統:玻璃基板、薄膜光波導薄膜與光柵結構,和細胞/生物分子層。當寬譜帶光照射時,生物傳感器反映光的特定波長是接近傳感器表面折射率的靈敏函數。通過 Epic系統測量細胞內的粘合物事件或細胞內蛋白質運動引起反射光的波長偏移。形成一系列波長偏移、波長、強度、時間之間的函數來進行分析。

lyte96無標記便攜生物傳感器的優勢:

移動性: lyte96創新設計之處是給使用者帶來了極大的靈活性。緊湊的結構結合了無線連接和集成的電池使lyte96方便移動。這使得它對于研究人員和開發人員來說成為一個*的分析工具。

易用性: lyte96簡化了研發實驗室中的過程。實驗開始時不需要復雜的預置,直觀輔助的軟件保證了高水平的易用性。由于技術體系,lyte96幾乎是免費維護。

數據分析:根據已建立的康寧Epic系統,高敏性的lyte96可進行寬光譜的細胞內試驗,從開始試驗到幾天的時間都可以提供實時數據以便研究。

 

 

 

 

 

 

 

 

 

 

1. 萊特96無標記便攜生物傳感器

 

 

2.測量原理示意圖

 

1:在增殖試驗中,用lyte96實時監測細胞數量,發現細胞數目和傳感器表面的質量是成正比的。微孔板和lyte96放置在加濕的培養箱內通過藍牙無線連接電腦。經典增殖試驗中,A431細胞加入到孔中,記錄37?C的細胞生長。

 

2:動態質量再分配(DMR)的測定

像許多其他的信號檢測,GPCR測定動態質量再分配過程中(DMR)是由lyte96無標記傳感器測定的。和A431細胞緩激肽試驗一樣,這個試驗是在室溫下進行。得到的EC500.45 nm,這類似于從文獻的結果。

參考文獻:

Nazirizadeh, Y. et al. Intensity interrogation near cutoff resonance for label-free cellular profiling. Sci. Rep. 6, 24685 (2016).

 

French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733 (2016).

 

Camp, N. D. et al. Dynamic mass redistribution reveals diverging importance of PDZ-ligands for G protein-coupled receptor pharmacodynamics. Pharmacological. Research, 105, 13-21 (2016).

 

Klein, A. B., Nittegaard-Nielsen, M., Christensen, J. T., Al-Khawaja, A., & Wellendorph, P. Demonstration of the dynamic mass redistribution label-free technology as a useful cell-based pharmacological assay for endogenously expressed GABAA receptors. Med. Chem. Commun., 7, 426–432 (2016).

 

Klepac, K. et al. The Gq signalling pathway inhibits brown and beige adipose tissue.Nat. Commun. 7, 10895 (2016).

 

Hamamoto, A., Kobayashi, Y. & Saito, Y. Identification of amino acids that are selectively involved in Gi/o activation by rat melanin-concentrating hormone receptor 1. Cell. Signal27, 818–827 (2015).

 

Navarro, G. et al. Orexin – Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine. J. Neurosci. 35, 6639–6653 (2015).

 

Wang, J. et al. RSC Advances danshen using a label-free cell phenotypic assay. RSC Adv. 5, 25768–25776 (2015).

 

Rex, E. B. et al. Phenotypic Approaches to Identify Inhibitors of B Cell Activation. J. Biomol. Screen. 20, 876–886 (2015).

 

Vinals, X. et al. Cognitive Impairment Induced by Delta9- tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB 1 and Serotonin 5-HT 2A Receptors. PLOS Biol., e1002194 (2015).

 

Fjellstr?m, O. et al. Novel Zn 2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents. PLoS One, 0145849 (2015).

 

Shridhar, N. et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 6, 10156 (2015).

 

Marada, S. et al. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling. PLOS Genet., 1005473 (2015).

 

Brust, T. F., Hayes, M. P., Roman, D. L. & Watts, V. J. New functional activity of aripiprazole revealed: robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling. Biochem Pharmacol. 93, 85–91 (2015).

 

Camp, N. D. et al. Individual protomers of a G protein-coupled receptor dimer integrate distinct functional modules. Cell Discov. 1, 15011 (2015).

 

 Beckert, U. et al. Biochemical and Biophysical Research Communications cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochem. Biophys. Res. Commun. 451, 497–502 (2014).

 

Otte, M. et al. CXCL14 is no direct modulator of CXCR4. FEBS Lett. 588, 4769–4775 (2014).

 

Liebscher, I. et al. A Tethered Agonist within the Ectodomain Activates the Adhesion G Protein-Coupled Receptors GPR126 and GPR133. Cell Rep. 9, 2018–2026 (2014).

 

Fang, Y. Label-Free Cell Phenotypic Drug Discovery. Comb. Chem. High Throughput Screen. 17, 566–578 (2014).

 

Fang, Y. Label-free drug discovery. Front. Pharmacol. 5, 1–8 (2014).

 

Febles, N. K., Ferrie, A. M. & Fang, Y. Label-Free Single Cell Kinetics of the Invasion of Spheroidal Colon Cancer Cells through 3D Matrigel. Anal. Chem. 86, 8842–8849 (2014).

 

Lee, M. Y. et al. A Comparison of Assay Performance Between the Calcium Mobilization and the Dynamic Mass Redistribution Technologies for the Human Urotensin Receptor. Assay Drug Dev. Technol. 12, 361–368 (2014).

 

Balenga, N. A. et al. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br. J. Pharmacol. 171, 5387–5406 (2014).

 

Carter, R. L. et al. Dynamic mass redistribution analysis of endogenous b -adrenergic receptor signaling in neonatal rat cardiac fibroblasts. Pharma. Res. Per.2, 1–16 (2014).

 

Teutsch, C. et al. Detection of free fatty acid receptor 1 expression?: the critical role of negative and positive controls. Diabetologia 57, 776–780 (2014).

 

Meister, J. et al. The G Protein-coupled Receptor P2Y 14 Influences Insulin Release and Smooth Muscle Function in Mice. J. Biol. Chem. 289, 23353–23366 (2014).

 

Andradas, C. et al. Targeting CB 2 -GPR55 Receptor Heteromers Modulates Cancer Cell Signaling. J. Biol. Chem. 289, 21960–21972 (2014).

 

Schmitz, J. et al. Dualsteric Muscarinic Antagonists ? Orthosteric Binding Pose Controls Allosteric Subtype Selectivity. J. Med. Chem. 57, 6739–6750 (2014).

 

Mackenzie, A. E. et al. The Antiallergic Mast Cell Stabilizers Lodoxamide and Bufrolin as the First High and Equipotent Agonists of Human and Rat GPR35. Mol. Pharmacol.85, 91–104 (2014).

 

Chen, X. et al. Rational Design of Partial Agonists for the Muscarinic M1 Acetylcholine Receptor. J. Med. Chem. 58, 560–576 (2014).

 

Ferrie, A. M., Zaytseva, N. & Fang, Y. Divergent Label-free Cell Phenotypic Overexpressed b2-Adrenergic Receptors. Sci. Rep. 4, 3828 (2014).

 

Orgovan, N. et al. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci. Rep. 4, 4034 (2014).

 

Sun, H. et al. Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci. Rep. 4, 4934 (2014).

 

 Sundstr?m, L., Greasley, P. J., Engberg, S., Wallander, M. & Ryberg, E. Succinate receptor GPR91 , a G ai coupled receptor that increases intracellular calcium concentrations through PLC b. FEBS Lett. 587, 2399–2404 (2013).

 

Fang, Y. Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J. Pharmacol. Toxicol. Methods 67, 69–81 (2013).

 

Ahmedat, A. S. et al. Pro-fibrotic processes in human lung fibroblasts are driven by an autocrine / paracrine endothelinergic system. Br. J. Pharmacol. 168, 471–487 (2013).

 

Morse, M., Sun, H., Tran, E., Levenson, R. & Fang, Y. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family. BMC Pharmacol. Toxicol. 14, 1–18 (2013).

 

Online, V. A., Ferrie, A. M., Wang, C. & Fang, Y. Integrative Biology identifies an intracellular signalling wave mediated through the b2-adrenergic receptor. Integr. Biol. 5, 1253–1261 (2013).

 

Christiansen, E. et al. Discovery of a Potent and Selective Free Fatty Acid Receptor 1 Agonist with Low Lipophilicity and High Oral Bioavailability. J. Med. Chem. 56, 982–992 (2013).

 

Hennig, D. et al. Novel Insights Into Appropriate Encapsulation Methods for Bioactive Compounds Into Polymers: A Study With Peptides and HDAC Inhibitors.Macromol. Biosci. 1–12 (2013).

 

Deng, H., Sun, H. & Fang, Y. Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors. J. Pharmacol. Toxicol. Methods 68, 1–24 (2013).

 

Zaytseva, N. et al. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion. Sens. Actuators B Chem. 1–17 (2013).

 

Zhao, H., French, J. B., Fang, Y. & Benkovic, S. J. The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem. Commun. (Camb). 49, 1–17 (2013).

 

Cho, Y. & Baldán, A. Quest for New Biomarkers in Atherosclerosis. Mo. Med. 110, 325–330 (2013).

 

Hennen, S. et al. Decoding Signaling and Function of the Orphan G Protein– Coupled Receptor GPR17 with a Small-Molecule Agonist. Sci. Signal. 6, 1–33 (2013).

 

Deng, H. & Fang, Y. The Three Catecholics Benserazide, Catechol and Pyrogallol are GPR35 Agonists. Pharmaceuticals 6, 500–509 (2013).

 

Deng, H., Wang, C. & Fang, Y. Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Adv. 3, 10370–10378 (2013).

 

Schrage, R. et al. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br. J. Pharmacol. 169, 357–370 (2013)

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
86-010-67529703
在線留言
主站蜘蛛池模板: 东辽县| 平凉市| 沈丘县| 宿松县| 阿克陶县| 中西区| 新邵县| 金坛市| 叙永县| 获嘉县| 百色市| 乐山市| 上犹县| 香格里拉县| 界首市| 二手房| 册亨县| 贵州省| 自治县| 临海市| 田阳县| 江安县| 丁青县| 霍邱县| 阿鲁科尔沁旗| 特克斯县| 桐柏县| 乳山市| 长子县| 九台市| 通辽市| 石楼县| 德惠市| 宜兴市| 南雄市| 三明市| 荃湾区| 巫溪县| 叙永县| 千阳县| 社旗县|