藻類是藍藻門、眼蟲藻門、金藻門、甲藻門、綠藻門、褐藻門、紅藻門等一系列水生生物的總稱。其形態種類眾多,小至微米級的單細胞微藻,大至長達幾米乃至幾十米的大型褐藻。藻類作為水體中重要的初級生產者,對整個生態系統乃至地球圈的穩定都起著重要的作用。萊茵衣藻、藍藻等模式藻類為功能基因、生物進化、光合作用等研究提供了非常佳的材料。同時,很多經濟藻類也在食品、醫藥、能源等行業中扮演重要角色。而水華、赤潮等有害生態現象也是由藻類造成的。因此,對藻類的研究一直是生物學和生態學中非常重要的熱點。
目前生命科學研究領域引人注目的研究熱點之一——表型組學研究,還主要集中在植物/作物領域。在藻類領域,表型組學研究剛剛起步,但發展速度極為迅猛。藻類表型組學一方面是藻類基因組學的補充與驗證,解釋基因組和環境因素對植物表型的復雜作用及中間的變化過程;另一方面可以用于經濟藻類的抗逆生理研究和遺傳育種,全面分析藻類表型,獲取更優良的經濟藻種;還可以用于水華、赤潮的發生機理研究。
藻類表型組學需要全面分析藻類的表型特征,尤其是光合生理、形態、色素組成與分布、不同色素的光合貢獻、脅迫生理等方面的測量與分析,使藻類表型數字化、生理生態及功能可視化。這就需要針對藻類表型專門設計的技術解決方案。
按表型數據類型分類: |
|
藻類培養與常規生理表型數據在線監測儀器 |
|
光合作用表型 |
|
光譜表型 |
|
高通量綜合表型分析 |
|
按使用方式分類: |
|
監測式儀器 |
|
便攜式儀器 |
|
實驗室儀器 |
|
高通量自動測量系統 |
|
方案中所列舉的儀器可以根據具體研究需求靈活組合,而且所有儀器的認可度*,國內外科學家均使用這些儀器發表了大量科研論文。下面介紹部分系統方案的應用案例。
中科院水生生物所王強研究員為了研究亞硝酸鹽脅迫對藍藻Synechocystis sp. PCC 6803光系統II的脅迫機制,使用AquaPen手持式藻類熒光測量儀、FL3500葉綠素熒光儀(FL6000之前型號)和TL葉綠素熱釋光系統,分別測量分析了Fv/Fm光化學效率、OJIP快速熒光動力學曲線、QA-再氧化動力學曲線、S-state測量和TL熱釋光曲線。研究終證明亞硝酸鹽脅迫首先影響Synechocystis sp. PCC 6803 光系統II受體側(Zhan X, 2017)。
萊茵衣藻Chlamydomonas reinhardtii的新陳代謝對環境變化有很好的適應性。加利福尼亞大學的Daniela Strenkert嘗試模擬一個光暗周期,研究這一天中萊茵衣藻的轉錄組與蛋白質組變化。這一研究首先要求能夠精確模擬一個動態變化的培養環境,同時還要對相關培養環境及藻類密度、生理等進行監測。這樣才能為后續的組學分析提供盡量精準的樣品。而目前能達到這一要求的藻類培養監測儀器只有FMT150藻類培養與在線監測系統。其培養條件設置如下:
2006年,捷克在南極James Ross島建設了Johann Gregor Mendel站。駐扎該站的捷克馬薩里克大學科研人員從2007年就開展研究當地藻類和地衣對南極溫度升高的響應,從而評估溫室效應對南極生態系統的影響。當時他們使用了專門加強極地適應能力的AquaPen/FluorPen系列手持式葉綠素熒光測量儀來檢測藻類和地衣的光合生理和生長狀態。AquaPen/FluorPen既可以手動操作,也具備無人值守監測葉綠素熒光的功能,在南極的嚴酷環境下表現良好。
所有光合生物都必須要應對過量光照來避免光合氧化脅迫。對于植物和綠藻來說,高光的快響應機制就是光系統II的非光化學淬滅(NPQ)。這一過程允許光系統II將過量能量以熱量形式安全地耗散掉。PsbS蛋白是這一過程中的重要傳感器。
為了確定PsbS蛋白在萊茵衣藻Chlamydomonas reinhardtii的NPQ和光保護中的作用,艾克斯-馬賽大學Tibiletti T等培養了可以表達藻類或擬南芥psbS基因的葉綠體轉基因株。通過FluorCam開放式葉綠素熒光成像系統進行的NPQ成像分析終表明,兩種PsbS蛋白都可以增強萊茵衣藻野生型和npq4突變株的NPQ,但通過Fv/Fm測量沒有觀察到明確的光保護活性。
Miguel Costa Leal等利用FluorCam封閉式多光譜熒光成像系統,對珊瑚共生體的光合能力及生態變化進行了研究。FluorCam封閉式多光譜熒光成像系統除了進行葉綠素熒光成像測量,還可以進行植被歸一化指數NDVI成像與綠色熒光蛋白GFP成像(也可以測量其他熒光蛋白)。在本研究中,NDVI成像反映其葉綠素的分布及濃度變化,GFP成像則指示了含有GFP類似蛋白的刺胞動物組織,葉綠素熒光成像則展示了珊瑚的光合能力。同時多光譜熒光還可以進行次生代謝組與病害表型研究及其他熒光蛋白成像,如YFP、BFP、RFP等。
因此,僅一臺FluorCam多光譜熒光成像系統就可以完成相當全面的藻類表型研究:光合表型、NDVI反射光譜指數、熒光蛋白、次生代謝水平與分布。
大理石雕像上經常會覆蓋上綠色或黑灰色的生物膜。這種生物膜是藍藻、藻類和真菌的混合體,并會逐漸侵蝕大理石。為了對戶外大理石雕像進行保護,歐洲相關科研機構開展了大量相關的研究工作。而為了評估生物膜的活性以及清洗后的效果,葉綠素熒光成像技術無疑是便捷、直接的技術。意大利弗洛倫薩應用物理研究所的Marta Mascalchi使用激光清除大理石上的生物膜。FluorCam便攜式熒光成像儀為其檢測清除效果并優化激光參數提供了有力的數據。
進行藻類產油生物能源開發,首先就是獲得高生物量的優良藻種。非光化學淬滅NPQ代表著藻類光合系統沒有利用而熱耗散掉的能量。那么減小NPQ,勢必能提高其生物量。本研究中使用FluorCam葉綠素熒光成像系統篩選了兩種NPQ減小的衣藻突變株,同時通過MC1000 8通道藻類培養監測系統探索其優良的培養條件。MC1000 8通道藻類培養監測系統可以認為是FMT150藻類培養與在線監測系統的簡化版,可動態調控光照、溫度與光暗周期并通過測量OD監測藻類生長動態,非常適用于藻類的多重復快速培養。
2019年中國海洋大學裝備了*套海洋生物表型組學光學成像分析系統,這一系統包含以下子系統:
FluorCam多光譜熒光成像系統是FluorCam葉綠素熒光成像技術的高級擴展產品,既可用于葉綠素熒光動態成像分析,又可用于長波段UV紫外光對植物葉片激發產生的MCF多光譜熒光成像測量分析,還可選配綠色熒光蛋白GFP等穩態熒光的成像測量。FluorCam廣泛應用于藻類光合功能基因、逆境脅迫、藻類生態、經濟藻類育種以及生物能源開發等研究。其中,MCF多光譜熒光尤其適用于病害造成的次生代謝組總體分析及藻類防御機制研究。
AlgaTech客戶定制藻類高通量表型分析平臺由樣品自動傳送系統、光譜成像站和分析軟件組成,可選配多光譜成像、高光譜成像、葉綠素熒光成像、多光譜熒光成像等成像工作站,每個工作站可獨立運行,可同步監測藻類光合作用、pH及溫度,還可選配不同類型藻類培養與在線分析系統。
立即詢價
您提交后,專屬客服將第一時間為您服務