當前位置:島津企業管理(中國)有限公司>>技術文章>>教育部【設備更新】島津SEM-SERVO在纖維增強樹脂基復合材料疲勞破壞研究中的應用
教育部【設備更新】島津SEM-SERVO在纖維增強樹脂基復合材料疲勞破壞研究中的應用
?
本文使用島津SEM SERVO帶掃描電子顯微鏡的高溫原位疲勞試驗機實時觀察記錄裂紋擴展長度,基于非線性彈性斷裂力學通過公式計算材料的J積分,并轉換為與J積分相對應的有效應力強度因子評價材料的斷裂韌性。
Electrical contact materials are generally Ag- or Cu-based composites and play a critical role in ensuring the reliability and efficiency of electrical equipments and electronic instruments. The MAX phase ceramics display a unique combination of properties and may serve as an ideal reinforcement phase for electrical contact materials. The biological materials evolved in Nature generally exhibit 3-D interpenetrating-phase architectures, which may offer useful inspiration for the architectural design of electrical contact materials. Here, a series of bi-continuous Ag-Ti3SiC2 MAX phase composites with high ceramic contents exceeding 50 vol.% and having micron- and ultrafine-scaled 3-D interpenetrating-phase architectures, wherein both constituents were continuous and mutually interspersed, were exploited by pressureless infiltration of Ag melt into partially sintered Ti3SiC2 scaffolds. The mechanical and electrical properties as well as the friction and wear performance of the composites were investigated and revealed to be closely dependent on the ceramic contents and characteristic structural dimensions. The composites exhibited a good combination of properties with high hardness over 2.3 GPa, high flexural strength exceeding 530 MPa, decent fracture toughness over 10 MPa m1/2, and good wear resistance with low wear rate at an order of 10-5 mm3/(N·m), which were much superior compared to the counterparts made by powder metallurgy methods. In particular, the hardness, electrical conductivity, strength, and fracture toughness of the composites demonstrated a simultaneous improvement as the structure was refined from micron- to ultrafine-scales at equivalent ceramic contents. The good combination of properties along with the facile processing route makes the Ag-Ti3SiC2 3-D interpenetrating-phase composites appealing for electrical contact applications.
電接觸材料廣泛應用于電氣開關、功率繼電器等電子電氣設備,在開關電路、傳導電流和承載等方面發揮著關鍵作用,對于保障電子儀器和電氣設備的安全可靠與高效運行至關重要。電接觸材料需要具有優異的導電性和導熱性、良好的力學性能,以及高耐磨性和抗電弧侵蝕性能。常用的電接觸材料通常是由導電金屬銅或銀與一種或多種增強相組成的復合材料,其中銅或銀提供導電性和導熱性,而增強相提供硬度、強度、耐磨性和抗電弧侵蝕性能。相比于銅基復合材料,銀基電接觸材料具有電導率和熱導率高、接觸電阻小、化學性質穩定等優點。商用銀基電接觸材料的增強相主要包括金屬(如鎢、鎳、鈦)和陶瓷(如氧化錫、氧化鎘、氧化鋅)兩大類。MAX相陶瓷具有共價鍵、金屬鍵、離子鍵等混合鍵合狀態,兼具金屬和陶瓷的優異特性,并且與銀之間具有良好的潤濕性,有望作為銀基電接觸材料的理想增強相。目前已報道的Ag-MAX相復合材料大多采用粉末冶金法(熱壓燒結或放電等離子燒結等)制備而成,材料中的MAX相分散在銀基體中,難以避免孔洞、雜質等缺陷,并且材料的微觀結構有待進一步優化控制,性能亟待提升。與之相比,自然界經長期進化形成的生物材料往往表現出微觀三維互穿結構,各組元均保持連續并且在三維空間相互穿插,該結構被證實可有效保留組元的性能優勢,并促進組元間應力傳導,提升復合材料的損傷容限。生物材料的巧妙結構可為高性能Ag-MAX相電接觸材料研制提供有益的啟示。
圖1 新型Ag-MAX相三維互穿金屬陶瓷復合材料的宏觀形貌、微觀結構及其性能與其他材料的比較
如圖1所示,中國科學院金屬研究所劉增乾研究組從生物材料中廣泛存在的三維互穿結構獲得靈感,利用Ag與Ti3SiC2 MAX陶瓷之間良好的潤濕性,將Ag熔體無壓浸滲到預燒結成型的Ti3SiC2多孔骨架中,研制了一系列具有微米和超細尺度的高陶瓷含量(>50 vol.%)新型耐磨Ag-MAX相三維互穿金屬陶瓷復合電接觸材料。連續的陶瓷相可起到高效的強化作用,連續的Ag相可提供連續的電荷傳輸路徑,Ag和陶瓷在三維空間的相互穿插與機械互鎖可促進相間應力傳導,并限制各自相內部及兩相界面處的損傷演化,而MAX相陶瓷的自潤滑性質及其與Ag之間的強界面結合可有效減輕磨損和磨屑剝落。
圖2 Ag-Ti3SiC2復合材料的力學和電學性能。微米和超細結構復合材料的(a)維氏硬度、(b)電導率、(c)彎曲強度和(d)斷裂韌性隨陶瓷含量的變化
如圖2所示,復合材料表現出超過2.3 GPa的高硬度、超過530 MPa的高彎曲強度、超過10 MPa·m1/2的良好斷裂韌性,以及10-5 mm3/(N·m)量級的低磨損速率,并且隨著三維互穿結構從微米細化到超細尺度,材料的硬度、強度、電導率和斷裂韌性得以同步提升。優異的綜合性能以及簡便的制備工藝使得新型耐磨Ag-MAX相三維互穿金屬陶瓷復合材料在電接觸領域具有顯著優勢,同時本工作提出的結構設計策略,即以MAX相陶瓷作為增強相、構筑微觀三維互穿結構、將結構細化到超細尺度,有望擴展應用于新型高性能復合材料研發。
課題組通過自主設計夾具,改變加載方式,使用島津SEM SERVO帶掃描電子顯微鏡的高溫原位疲勞試驗機實時觀察記錄裂紋擴展長度,基于非線性彈性斷裂力學通過公式計算材料的J積分,并轉換為與J積分相對應的有效應力強度因子評價材料的斷裂韌性,研究人員得到高韌性和高損傷容限的復合材料。相關研究結果發表在Nano Research, Materials Today, Communications Materials等期刊。
圖3 島津SEM SERVO帶掃描電子顯微鏡的高溫原位疲勞試驗機
文獻題目
《Wear-resistant Ag-MAX phase 3-D interpenetrating-phase composites: processing, structure and properties》
https://doi.org/10.1007/s12274-023-6015-1
Nano Research, 2023: 1-14.
期刊影響因子:10.269
使用儀器
島津SEM SERVO帶掃描電子顯微鏡的高溫原位疲勞試驗機
作者
Y. Guo a, b, Y. Y. Liu a, b, Z. Q. Liu a, b, Z. F. Zhang a, b
中國科學院金屬研究所
a Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
b School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China